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How To Use Two Computational
To Solve Simple System ldentification

roblems

Rolfe A. Leary

System identification has been defined as the process of determing a differ-
ence or differential equation such that it describes a physical process in ac-
cordance with some predetermined criterion (Sage and Melsa 1971). One should
not, however, restrict it to physical processes, as many of the same principles
apply to biological and social processes as well. In fact, system identifica-
tion is an integral part of systems analysis, and solving the system identifi-
cation problem may be viewed as one step toward the comstruction, testing, and
analysis of mathematical characterizations of system processes. For an appli-
cation of system identification concepts to the study of forest dynamics see
Leary (1970},

One approach to the system identification problem (others are discussed by
Sage and Melsa 1971) is to treat observations on a system as the boundary con-
ditions governing the solution of a functional equation. Often-used functonal
equation types are first-order ordinary differential or difference equations.
We can limit ourselves to first-order equations because any higher-order linear
or nonlinear differential or difference equation may be converted to a system
of gimultaneous first-order equations. In most instances the only practical
method of solving the resultant boundary-value problem is to use digital or
hybrid (for continuous systems) computers. Generalized digital computer pro-
grams have been writtenm to solve nanllne&r multipoint boundary-~value problems
(Childs et al. 1969, Leary and Skog) 1= i/ however, the uninitiated are often un-
able to grasp the sequence of operations involved in the programs, and there-
fore unable to make efficient use of them. The purpose of this paper is to
provide the reader with a better understanding of the methods involved so he
can make better use of the available programs. We do this by presenting two
step-by~step hand-computed solutions to a simplified problem using a computa-
tional strategy developed by the author and the particular solutions perturba-
tion method (Childs et al. 1969).

We use these two methods for solving the same problem because they are imple-
mented by available computer programs; also, we want to make it clear that one
method is not necessarily better than the other but that it is the

1/ Leary, Rolfe A., and Kenneth E. Skog. A preliminary user's guide to
QUASI. North Cent. For. Exp. Stn., St. Paul, Minn. 1970, (Unpubllshed
report.)



formulation of the problem as a multipoint boundary-value problem that is
important. Exactly how one solves the boundary-value problem is not crucial,
because the results are identical. The problem that follows is, in fact, a
simple two-point boundary-value problem. Meaningful problems will ordinarily
be higher dimensional (>2) with several boundary conditions.

THE PROBLEM

The problem is hypothetical, chosen to minimize the hand computations.
Briefly it is as follows: Assume the process of concern is thought to be
governed by the set of first-order difference equations:

AYL/At

i

aii Y1l + aio Y2

AY2/AMt = ap; Y1 + asy Y2 , where

AYL/At = (Y1 (£ 4+ k) -~ Y1 (£))/((t + k) - t),

Yi are system state variables, and a;. are numerical constants. Assume also
that a,, = .75, a,, = .25, the initlal conditions at t=0 are Yl = 1,

Y2 = 4, a;; and a,; are unknown, and we have an observation on the system
at t=l, where Yl = 4.4 and Y2 = 5.6. The question to be answered is, what
values should a;; and a,; have so that Yl = 4.4 and Y2 = 5.6 when t=1?

To solve this problem we formulate it as a two-point boundary-value problem as
follows:

EQUATION 1,
AY1/At = Y3 Y1 + (.75) Y2
AY2/At = Y4 Y1 + (.25) Y2

0

AY3/At

INCYINS 0

with boundary conditions:

EQUATION 2.

Y1({t=0) 1, Yi(t=1) = 4.4

H
L]

¥2(t=0) = 4, Y2(t=1) = 5.6 .



Clearly, the problem is to find initial conditions for Y3 and Y4 such that
the boundary conditions are satisfied, Equation 1 with the conditions in
Equation 2 is a nonlinear boundary-value problem,

TWO STRATEGIES FOR SOLUTION

Not 81l nonlinear two-point or multipoint boundary-value problems are sclvable,
But many meaningful ones can be solved using the strategies outlined in this
section. Strategy One is a variation of the method known as the method of
complementary functions, and Strategy Two is the method of particular solutions
(Childs et al. 1969). The essential difference between the two methods con-
cerns the form of the linear equation for which solutions are computed. The
method of complementary functions utilizes solutions of both the nonhomo-
geneous and homogeneous forms of the linear equation. The method of particular
solutions uses solutions of the nonhomogeneous equation only. The two strate-
gies are therefore related and have several common operations, as follows:

Step Operation
1 Linearize the functional equations analytically.
2 Set initial conditions for solution of functional equations.
3 Solve functional equations by numerical integration or iteration.
4 Solve algebraic equations for integration constants so the

boundary conditions are satisfied.

5 Form new initial conditions, YLs (to) via superpositio %/ and/or
check for convergence by (Strategy One) comparing YL% (to) and
YLg”l (tg) or (Strategy Two) checking the smallness of the
integration constants.

6 If not convergent, set new initial conditions governing solution
of functional equations and go to Step 3.

2/ For a discussion of superposition of homogeneous and nonhomogeneous
solutions of differential equations see any basic textbook; e.g., Martin and
Reissner (1961), and Bellman (1968). For difference equations consult
Goldberg (1961, page 123).



Strategy One

Strategy One is patterned after Baird (1969) and may be described by the
following recurrence relations:

EQUATION 3,

A x K K~1

Yy (£) = £(73,¢) » Ty (to) = ¥y (ko)

EQUATION 4.

A ‘ i

‘ K K -

R = 20+ ary® e Xy, ey - s 5
where

A

Y = AY/At

K is the iteration count,

N denotes the nonlinear equations,
L denotes the linear equations,

J 18 the Jacobian matrix at time ¢,
T (te) = Typ

Y;s is a constant matrix of initial conditions, the best estimates of
unknown i.c., exact values of known i.c., and specified 1.c. for solu-

tion of the homogeneous equations, and

¥1.(to) is the initial condition vector formed by superposition of one
particular solution and one or more homogeneous solutions.

Column 1 of Y43 contains the initial conditions governing the solution of the
nonhomogeneous %orm of Equation 4, Yi, contains the initial conditions
governing the first solution of the homogeneous form of Bquation 4. Subsequent
columns govern subsequent homogeneous solutions.

This strategy is different from the one usually employed in the method of
complementary functions in that the initial conditions for the particular solu-
tion of Equation 4 do not change from one iteration (value of K) to the next.
The primary advantage of this approach is that it minimizes relative error
growth during execution of the algorithm,

The integration constants used in superposition are determined so that the
boundary conditions are satisfied; i.e., by solving the system of algebraic
equations:



i
[

vyl (ty) ylyiti) +oey vl () + ¢y vyl (e4) = BC1(ty) and

fi

yZC(ti) yzp(ti) + ¢y y21h(ti) + ¢, y22h(ti) = BCZ(ti) s

where ¢ denotes the complete solution of the linearized equation.

The operation at Step 1 for the method of complementary functions requires that
we prepare the basic nonlinear system, the nonhomogeneous form of the linear-
ized equation, and as many homogeneous forms of the linearized equations as
there are unknown initial conditioms. Using the notational convention

AY1 = AY1/At  (the first forward difference) we have:

AYL = ¥3 Y1 + (.75)Y2 = £
AY2 = Y4 Y1 + (.25)¥2 = f,
AY3 =0 = £
AYG =0 = £,
AY5 = [Y3 Y1 + (.75)Y2| [0f,/8Y1 0f,/8Y2 0f;/0Y3 of,/a¥4| [¥Y5 - Y|
AY6 = (Y4 Y1 + (.25)Y2| |0£2/8Y1 5f,/0¥2 3f,/0Y3 of,/0Y4| |¥Y6 - Y2
AY7 = |0 ’ D£,/9Y1 84 /0Y2 0£5/8Y3 0f4/0Y4| |Y7 - Y3
AY8 = |0 L [BE4/3Y1 3£,/0¥2 9£,/0¥3 af,/0Y4| V8 - V4|
AY9 = '“ T [¥9
AY10 = Y10
AY11 = BY; 1=3=1,2,3,4 "y
AY12 = - - X2l
AY13 = B T [¥13]
£Y14 = Y14

9f4 .
AY15 = 7Y; 1=3=1,2,3,4 Y15
AY16 = B - j&%it



In the above system of 16 equations, the first four constitute the nonlinear
system, the next four the nonhomogeneous form of the linearized equation, and
the last eight the homogeneous form of the linearized equation. As will be
clear later, the solutions of 9 to 12 and 13 to 16 above will differ because
of different initial conditions. They should in fact be linearly independent
to prevent ill-conditioning in the system of linear algebraic equations that
is solved for the integration constants.

We are ready to begin Step 2. Let us use as initial estimates for the initial
conditions on Y3 and ¥4 the values 0.5 and 0.5; to ensure independence of
homogeneous solutions we purposely choose Y11 =1, Y12 = 0, and Y15 = O,
Y16 = 1. Iteration 1 follows:

Step 2: Set i.c. for Step 3: Solve functional equations; i.e.,
functional equations evaluate equations 1-16 and add to i.c.

to give Yi(t=1)

¥1(t=0) = 1.0 AYI = 3.5 Y1{t=1) = 4.5
Y2( 0) = 4.0 AYZ = 1.5 Y2( 1) = 5.5
¥Y3( 0) = .5 estimated AY3 = 0 ¥3( 1) = .5
Y4( 0) = .5 estimated AYE = 0 Y4( 1) = .5
Y5( 0) = 1.0 AYS = 3.5 Y5( 1) = 4.5
Y6( 0) = 4.0 AY6 = 1,5 Y6( 1) = 5.5
Y7{ 0) = .5 estimated AY7 = O Y7¢( 1) = .5
¥Y8( 0) = .5 estimated AY8 = 0 ¥8( 1) = .5
¥Y9(C 0) = O AYS = 1.0 ¥9( 1) = 1.0
Y10( 0) = O AY10 = O Yi0( 1) = O
Y1i( 0) = 1.0 AYIl = 0 Y1i1( 1) = 1.0
Yi2(¢ 0) = O AY12 = O Yi2( 1) = O
Y13( 0) = O AYI3 = 0 Y13( 1) = 0
Yi4( 0) = O AY14 = 1.0 Yi4( 1) = 1.0
Yi5¢ ©0) = O AY15 = 0 Yi5(¢( 1) = O
Y16( 0) = 1.0 AY16 = 0 Y16( 1) = 1.0



Clearly,

AL4

i

#

Y4 Y13 4+ .25 Y14 + 0 Y15 + Y1 Yi6

5(0) + .25(0) + 0(0) + 1(1) = 1

Step 4: Solve for integration constants so boundary

Time Particular

geneous
Y5 = 1 Y9 = 0]
0 +e,y +02
Y6 = 4 Y10 = 0]
Y5 = 4.5 Y9 = 1]
1 +c1 +c2
¥6 = 5.5 Y10 = Q]
This simplifies to
1 0
c + ¢ =
1 2
0 1

First homo-

Second homo-

conditions are satisfied,

(B£2/3Y1)Y13 + (9£2/5Y2)Y14 + (B3£2/3Y3)Y15 + (9£2/3Y4)Y16

Boundary conditions

+.

Step 5: Form new initial conditions for
superposition principle; i.e.,

[¥5(t=0) = 1.0
Y6(t=0) = 4.0
Y7(t=0) = .5
Y8(t=0) = .5

Then check for convergence by comparin
tions; i.e., compare YLK(t ) and YLS—l(to)o When K=1, the comparison is

between Yrg(to)

(Y9 (£=0)

Y10 (t=0)
S (c1=—°l)
Y11 (£=0)

Y12 (t=0)

]

]

i

the linearized equations using the

0]
0

1

+ (c2

9

geneous
¥13 = 0|
Y14 = 0]
Y13 = 0]
Y14 = 1]
.1 ¢y
oY
1 c,

(observation)

-.1

+.1

.1)

and Yi. Thus, our comparison is:

Y13(t=0)
Y14 (t=0)

Y15(t=0)

Y16 (t=0)

1.

0

4,0

b.4

5.6

1

it

fl

0

0

1]

[1.0]

4.0

°

initial conditions at successive itera-



¥4 (tg) and Yi

1.
4,

}mmoo

K}
.0
o4 .
.6}

®

Clearly, convergence has not occurred.

Step 6: According to Equation 3, the initial conditions governing the solu-
tion of the nonlinear equations at the start of iteration 2 are given by
YLl(to), the result from Step 5. Thus, in iteration 2 which follows, the
initial conditions for Y3 and Y4 are 0.4 and 0.6, respectively.

Step 2: Set i.c., Step 3: Solve functional equations, i.e.,
for functional equations evaluate equations 1-16 and add to i.c.
Y1(0) = 1.0 AY1 = 3.4 Yi(1) = 4.4
Y2(0) = 4.0 AY2 = 1.6 Y2(1) = 5.6
Y3{0) = .4 from Iteration 1 AY¥3 = 4] v3{1) = .4
Y4(0) = .6 from Iteration 1 AY4 = O Y4(1) = .6
Y5(0) = 1.0 AY5 = 3.5 Y5(1) = 4.5
Y6(0) = 4.0 AYE6 = 1.5 ¥6(1) = 5.5
Y7(0) = .5 ipnitial estimates AY7 = O ¥7{1) = .5
¥8(0) = .5 initial estimates AY8 = ( ¥Y8(1) = .5
¥9(0) = 0 AY9 = 1.0 Y9(1) = 1.0
Y10(0) = O AY10 = O Y10(1) = O
Y11(0) = 1.0 AY11l = 0 Y11(1) = 1.0
Y12(0) = O AY12 = 0 Yi2(1) = O
Y13(0) = O AY13 = O Y13(1) = O
Y14(0) = O AY14 = 1.0 Y14(1) = 1.0
Y15(0) = 0 AY15 = O Yi5(1) = O
Y16(0) = 1.0 AY16 = O Y16(1) = 1.0

8



Step 4: Solve for integration constants so boundary conditions are satisfied
(from Iteration 1, Step 4, we see that conditions at t=0 do not affect the
solution),

Time  Particular First homo- Second homo~  Boundary conditions
geneous geneous (observation)
Y5 = 4,31 ¥9 =1 Y13 =0 4.4
1 + ¢y + e, =
¥6 = 5.5] Y10 = 0] Y14 = 1 5.6
(“1 0 -1 c; = ~-.1
cy L» +c, = , thus
0 1 +.1 c, = +.1
Step 5: Form new initial conditions via superposition,
[Y5(t=0) = 1.0] Y9(t=0) = 0] [Y13(t=0) = 0] [1.0]
Y6( 0) = 4.0 Yi0( 0) = O Yi4( 0) = O 4,0
+ (cy=-.1) + (c,=.1) =
Y7( 0) = .5 ¥11( 0) = 1 Y15( 0) =0 .4
¥Y8( 0) = .5] ¥12( 0) = 0] Y16( 0) = 1] | .6

and check for comvergence by comparing results with those precduced at Step 5
of the previous iteration; i.e., compare YLé(to) and YLé(to)- Thus:

1.0] (1.0

4,0 4.0
VS, , and we see that convergence has occurred.

4 A

-8 L6

We may conclude, therefore, that the following equations may be used to
approximate the true equations.governing the observed process:

AY1

it (.4)YL + (.75)Y2

£Y2
e = (L6)YL + (.25)¥2 .

|



Strategy Two

This computational strategy is taken from Childs et al. (1969), and may be de-
scribed by the recurrence relations:

EQUATION 5.

A
K . K K . K-1
YN (t} - f(Y 9t) 3 YN (tO) - YLS (to)
EQUATION 6.
A
K(t) = K +y + K K.y K K =¥
LR = £ K0+ KO k), vk = v

where all notation is didentical to that in Equations 3 and 4, and where

Yij is a nonconstant matrix of initial conditions, the first column of
which contains the unperturbed initial conditions. Other columns con-
tain initial conditions that have been perturbed, and

Y1 .(to) is the initial condition vector formed by superimposing (in this
case) two perturbed particular solutions on one unperturbed solution.

The integration constants are determined by solving the system of algebraic
equations:

a, yl1p(ti) + a, lep(ti) + a, ylgp(ti) = BCLl(ty)
a, y21p(ti) + a, y22p(ti) + a, y23p(ti} = BC2(ty)
a; + a, + ag = 1

for aj, i=1,2,3. The third equation is a supplementary condition that the aj
must meet for this method.

The operation at Step 1 for the particular solutions perturbation method re-

quires that we prepare the basic nonlinear system and (for this problem) three
sets of the nonhomogeneous form of Equation 6. Thus we have:

10



AY1 = [¥3 Y1 + (.75)%2] = £,
AY2 = Y4 Y1 + (.25)%2 = f,
AY3 = |0 -
f3
AYL = |0 _
o _ £,
AYS = [¥3 Y1 + (.75)¥2] [afy/0v1 . . 3f, /oY4] [¥5-v1
AY6 = |Y4 Y1 + (.25)Y2| |8f,/8Y1 . ) 0F,/3Y4| |Y6-¥2
+
AY7 = |0 Bf,/3Y1 , ) 3f,/0Y4| |Y7-¥3
AY8 = |0 | [ag, /011 . ) OF, /Y4 |Y8-Y4
t S i
AY9 = |Y3 Y1 + (.75)Y2] | 1 [yo-y1 |
AY10 = Y4 Y1 + (.25)Y2 ot ¥10-Y2
+ i )
AY11 = |0 3 1=3=1,2,3,4 Y11-Y3
AY12 = |0 L 1 ly12-val
t t t
AY13 = [Y3 Y1 + (.75)Y2] | 1 [y13-v1)
AY14 = |Y4 Y1 + (.25)Y2 of Y14-Y2
+ L iaie1.2.3.4 :
AY15 = |0 oY 15354459, Y15-Y3
AY16 = |0 L | ly16-v4
€ t Tt

The first four equations above constitute the nonlinear system. Equations 5 to
8, 9 to 12, and 13 to 16. are nonhomogeneous forms of the linearized equations.
The solution of these three sets may be expected to differ because of differ-
ent initial conditions and should be linearly independent.

We are now ready to begin Step 2. Notice that we again estimate the unknown
initial conditions on ¥3 and Y4 as 0.5. Notice alsc that the initial con-
ditions for Y11 and Y16 are a constant multiple (in this case 1.2) of
those for Y3 and Y4, respectively. Iteration 1 follows:

11



Step 2: Set i.c. for Step 3: Solve functional equations; 1.e.,
3"”}L“” eva%

unctional equations Gate equations 1-16 and add to i.c.

to give Yi(t=1)

¥1(t=0) = 1.0 NG 3.5 ¥1(t=1) = 4.5
¥2( 0) = 4.0 AY2Z = 1.5 ¥2{ 1) = 5.5
Y3( 0) = o5 AY3 = 0 ¥3( 1) = .5
Y4( 0) = ) AYL = 0 Y4( 1) = .5
Y5( 0) = 1.0 LY5 = 3.5 ¥5( 1) = 4.5
Y6( 0) = 4,0 AY6 = 1.5 Y6( 1) = 5.5
Y7¢ 0) = «5 AY7 = 0 Y7( 1) = .5
Y8( 0) = «53 AY8 = 0 ¥8( 1) = .5
Y9( 0) = 1.0 AY9 = 3.5+.1 = 3.6 YO( 1) = 4.6
Yi0( 0) = 4.0 AY10 = 1.5+ 0 = 1.5 Yi0( 1) = 5.5
Y11( 0) = (.5)(1.2)=.6 AY11 = 0 vyii( 1) = .6
Yi2( 0) = .5 AY12 = 0 Yi2¢ 1) = .5
Y13( 0) = 1.0 AY13 = 3.5+ 0 = 3.5 Y13( 1) = 4.5
Yi4( 0) = 4,0 AY14 = 1.54+.1 = 1.6 Yi4( 1) = 5.6
Y15(¢ 0) = 5 AY15 = 0 Y15( 1) = .5
Y16( 0) = (.5)(1.2)=.6 AY16 = 0 Y16( 1) = .6

Step 4: Solve for integration constants so boundary conditions are satisfied.

Unperturbed First Second Boundary conditions
perturbed perturbed (observation)
Y5 = 4.5 Y9 = 4.6 Y13 = 4.5 4.4
a; |¥6 = 5.5| + ap |Y10 = 5.5| + a3 |Y14 = 5.6 = 5.6
1.0 1.0 1.0 1.0

The solution is a5 = 1, a, =-1, a = 1.

12



Step >

Check for convergence; i.e., are
Because they are not we form new initial conditions via superposition; i.e.,

Y5 (£=0)=1 |
¥6( 0)=4
1Y7( 0)=.5

8¢

0)=.5]

and start Iteration 2.

Step 2: Set i.c,

for functional equations
Y1{t=0) = 1.0
v2( 0) = 4,0
¥3( 0) = A
Y4 0) = .6
¥5( 0) = 1.0
Y6( 0) = 4.0
Y7(¢ 0) = 4
Y8( 0) = .6
Y9 ( 0) = 1.0
Yi0( 0) = 4,0
Y11({ 0) = {(,4)(1.2)=.48
Yiz{ 0) = .6
¥i3( 0) = 1.0
Yi4( 0) = 4,0
Yi5( 0) = 4
Yi6( 0) = (.6)(1.2)=.72

+(a,=-1)

aQ an

d

as

very near zero?

(Y9 (t=0) =1 | ¥13(e=0)=1 | |1
Y10( 0)=4 Y14( 0)=4 4
+(a;=1) =
Y11( 0)=.6 ¥15( 0)=.5 b
¥12( 0)=.5] Y16( 0)=.6] |.6]
Step 3: Solve functional equations
AYL = 3.4 Yi(t=1) =
AY2 = 1.6 ¥2( 1) =
AY3 = 0 Y3( 1) =
AYG = 0 Y4( 1) =
AY5 = 3.4 Y5( 1) =
AY6 = 1.6 ¥6( 1) =
AYT7 = 0 ¥7¢ 1) =
AYB = 0 ¥8( 1) =
AY9 = 3.4+,08=3,48 ¥9( 1) =
AY10 = 1.6+ 0 =1.6 ¥10( 1) =
AY11 = 0 Yi1( 1) =
AY12 = 0 yi2( 1) =
AY13 = 3.4+ 0 =3.4 Yi3( 1) =
AY14 = 1.6+.12=1.72 Yi4( 1) =
AY15 = 0 Y15( 1) =
AY16 = 0 ¥16( 1) =

4.4

5.6

b4

5.6

4,48
5’6

.48

13



Step 4: Solve for integration constants so boundary conditions are satisfied

4.4 %, 48 4,4 JAWA
a ‘5.6 +a, |5.6 | +a, [5.72 = |5.6
1.0 1.0 1.0 1.0

The solution is a; = 1, ap, =0, and a3z = 0.

Step S:d Check for convergence. Clearly, since a2=a3mo, convergence has
occurred,

In this case also we conclude that the following equations may be used to
approximate the process that was observed:

AYL/At (.4) Y1 + (.75) Y2

INUNENS

H

(.6) Y1 + (.25) Y2 .

DISCUSSION

It is clear that by following the steps outlined previously we have obtained
convergence in both cases in 2 iterations. Furthermore, convergence is to the
same values, as we asserted earlier., Thus both computational strategies, for
which there are available digital computer programs, are suited to solve this
two~point boundary-~value problem.

There are at least two points that appear to warrant some discussion. First,
the example selected was extremely simple and probably could be solved by
other means. We would like to emphasize that the procedures used for this
example apply virtually unaltered to problems that are orders of magnitude
more complex; e.g., for time-dependent coefficients (nonstationary processes),
"missing observation" situations, unobservable state variables, etc. For
several worked examples see Leary and Skog (1972).

Second, the computational strategies employed here compare favorably with
other methods of solving nonlinear boundary-value problems such as quasi-
linearization, and provide an efficient method of solving a variety of
meaningful problems.

14
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