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Abstract.—Building sophisticated habitat models for conservation of
owls must stem from an understanding of the relative quality of
habitats at a variety of geographic and temporal scales.  Developing
these models requires knowing the relationship between habitat
conditions and owl performance.  What measure should be used to
compare the quality of habitats?  Matrix population models represent
a powerful tool to aid in designing habitat research.  Through
sensitivity and elasticity analysis we can identify the demographic
transitions most important in determining population growth.  Matrix
methods also provide a powerful method for assessing individual
fitness in varying environmental conditions.  Matrix models can help
us decide how to:  (1) focus field efforts toward measuring the most
important demographic parameters, and (2) focus on those habitat
characteristics with the greatest effect on population dynamics.

Models of owl habitat relationships rely on
information describing the association between
owl species and measurable habitat character-
istics.  An ideal habitat model will rank the
relative quality of habitats at one or more spa-
tial and temporal scales.  Developing such a
ranking system requires evaluation of the per-
formance of individuals or populations in a
variety of habitats.  Designing such studies is
not trivial (e.g., see review in Morrison et al.
1992).  Along with the problems of sampling
owl performance at the appropriate range of
temporal and spatial scales, and of replicating
samples, a measure of ‘performance’ must be
chosen.  What metric measure should be used
to compare the quality of habitats?

Biologists studying habitat associations of
various vertebrate taxa employ a wide range of
metrics.  Relative comparisons of habitat use
vs. availability of habitat are common (see
examples in Alldredge and Ratti 1986).  In
other studies population density, reproductive
rate, measures of body condition, or less
frequently, survival rates are used to compare
habitats (e.g., Morrison et al. 1992, VanHorne

1983).  The choice of metrics is often deter-
mined largely by logistical and sampling con-
straints.  We suspect, however, that the choice
of metrics is often made without rigorous
consideration of the relative value of different
measures of performance.  Some biologists
contend that comparison of individual fitness
among habitats would provide the ideal metric
to ultimately rank habitat quality.

We propose that measures derived from popu-
lation matrix models (Caswell 1989, McDonald
and Caswell 1993) provide flexible, powerful
and intuitively appealing metrics with rigorous
links to fundamental theory in population
ecology and genetics.  The metrics include
many of those listed above, including measures
of individual fitness (McGraw and Caswell
1996) and population growth.  They also
include rigorous sensitivity analyses that point
to the most critical life history transitions and
allow comparison among populations or
habitats that vary in one or more important
ways.  The models readily incorporate
stochastic features and density dependence,
and are especially useful when data are
incomplete.  Much of the output is robust to
non-equilibrium conditions and populations
can be classified by age or stage (e.g., breeder
versus floater) to incorporate the most
biologically meaningful aspects of the life
history.  The methods therefore provide an
important tool to guide future efforts in
research and management.
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DESCRIPTION OF THE BASIC MODELING
FRAMEWORK

Matrix population models can classify life
cycles either by age or stage.  Age-classified
models examine population dynamics by
dividing the continuous age variable into
discrete age classes, each of the same duration.
Stage-classified models are more flexible, and
accommodate analysis of more complex life
cycle patterns.  The stages may describe social
status (e.g., breeder versus floater), develop-
mental stages, or spatial locations (e.g., high-
quality versus low-quality territory).  Transi-
tions among the stages are governed by vital
rates that describe processes such as growth,
fertility, survival or even the probability of
becoming a breeder or obtaining a high-quality
territory.

Matrix population models were initially devel-
oped by Leslie (1945, 1948).  Caswell (1989)
provided a comprehensive and synthetic over-
view of the modeling framework, and McDonald
and Caswell (1993) provided a briefer review of
their application to avian studies.  Matrix
models are the basis for several computer
packages for population and viability analysis
(e.g., RAMAS).  As a supplement to the
computer-based matrix analyses, life cycle
graphs provide a powerful and intuitively
appealing tool for model development.  We
begin with a brief introduction to age- and
stage-classified models and then provide an
example to illustrate its application to ques-
tions related to the habitat, conservation, and
population dynamics of owls.

Age-classified Models

Age-classified models place estimates of fertility
and survival rates in a square ‘projection ma-
trix’.  In the simplest case (Leslie matrix) the
top row of the projection matrix represents age-
specific fertility, while the subdiagonal repre-
sents age-specific survival.  A common exten-
sion is to add an element at the lower right that
represents survival of ‘adults’ (the term in fig.
1).  The remaining elements of the projection
matrix are zero.

The corresponding life cycle graph (fig. 2) is
mathematically equivalent to the matrix but
provides a more intuitively appealing version of
the life cycle.  In the life cycle graph, circles
(called nodes) represent stages or states.
Arrows (called arcs or loops) connecting the

Figure 1.—(a)  A Leslie matrix with three age
classes—first-year birds, second-year birds,
and ‘adults’.  The Px represent survival rates
from one age class to the next.  F

x
 represents

the fertility of females at age x, and is a
compound term given by the product of the
number of offspring, M

x
, and the survival of

females from the post-breeding census to the
next breeding pulse (P

x
).  If we conducted a

pre-breeding census, the parameterization
would be slightly different (see McDonald
and Caswell 1993).  For most bird studies it
is more convenient to conduct post-breeding
censuses, using the number of fledglings as
the count for ‘first-year’ birds.

(b)  A numerical example of using the
matrix in figure 1a to ‘project’ the population
at time t + 1 (‘projected’ census vectors to the
right of the equal sign) from the population at
time t (census vector to the right of the
matrix).  At time t there were 52 first-year
owls (fledglings), 16 second-year birds (just
past their first birthday) and 32 ‘adults’.  At
time t + 1 we therefore expect 55 fledglings,
17 second-year birds, and 34 ‘adults’.  The
population growth rate, λ, for this example is
1.06.
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Figure 2.—A life cycle graph corresponding to
the Leslie matrix given in figure 1a.  The
circles (nodes) represent the three age
classes, while the arrows (arcs) represent
the vital rates—survival and fertility, as
given in figures 1a and 1b.  The self-loop on
Node 3 (P

3
 = 0.75) represents the survival

rate of ‘adult’ females.  For more complex life
cycles, the graph is very useful in formu-
lating the model from which a matrix can be
constructed for computer analysis.

nodes represent the vital rates (transitions
between states).  In figure 2, Nodes 1 and 2
represent first-year and second-year individu-
als, respectively, while Node 3 represents
‘adult’ individuals.  Parameter estimates for
transition rates are represented by P

x
 — indi-

cating survival rate from stage or age class x to
x + 1, and F

x
 — indicating the mean number of

female offspring produced by females of age x,
m

x
, times the probability, P

x
, that a female of

age class x (censused just after the breeding
season) will survive from that census until the
next breeding pulse, just before the annual
census.  ‘Adult’ survival is represented by an
arc called a ‘self-loop’, P

3
, that represents the

(survival) probability of returning to the ‘adult’
stage at the next census.

From this simple representation of the popula-
tion vital rates we can calculate a number of
useful demographic parameters (table 1).  Fig-
ure 1b shows hypothetical values for the matrix

Table 1.—Demographic metrics obtained from analysis of a population matrix, A, with elements aij

representing the transitions from st(age) j to (st)age i.

_____________________________________________________________________________________________________
Parameter Derivation Importance
_____________________________________________________________________________________________________

Growth rate (λ) Dominant eigenvalue of A Finite rate of increase; can be developed
   as measure of individual fitness.

Sensitivity (sij ) ∂λ/∂aij Sensitivity of λ to a change in a
   one of the vital rates (aij); directly

(partial derivative of    equivalent to a selection gradient
  λ with respect to aij)    in quantitative genetics.

Elasticity (eij ) sij  *  aij /λ Proportional sensitivity of λ to a
   change in one of the aij.

Stable (st)age distribution Right eigenvector Proportion of population in each (st)age.

Reproductive value Left eigenvector Value of an individual of a given (st)age
   as a seed for population growth.

Cohort generation time (µ1) (Caswell & McDonald 1993) Mean age of reproduction for a cohort.

Age of stage (Cochran & Ellner 1992) Mean and variance for age of individuals
   in a given stage.
   (used for stage-classified models)

Damping ratio Second eigenvalue of A Measures rate at which damped
   oscillations return the population to
   equilibrium.

_____________________________________________________________________________________________________
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elements and ‘projects’ the expected census
vector at time t + 1 from the census at time t.
Because λ (=1.06) is slightly greater than one,
the number of individuals at time t + 1 is
slightly greater than at time t.  Important as-
sumptions underlying the simple Leslie matrix
model are absence of density dependence and
constancy of the age-specific vital rates.

Age-classified models have several limitations.
For long-lived organisms, matrix truncation or
the adult survival self-loop (fig. 2) may affect
some aspects of the results (see McDonald and
Caswell 1993, p. 166).  For example, sene-
scence is not well modeled by either abrupt
truncation or a self-loop for ‘adult’ survival.
Although senescence has long been ignored as
a demographic feature of avian populations,
recent analyses indicate that it may be an
important feature of avian population dynamics
(McDonald et al. 1996).  A more important
drawback of simple age-classified models is
that age may not be the most appropriate basis
for assessing population dynamics.  For
example, individuals of the same age that differ
in reproductive status (e.g., breeders versus
floaters) will have very different demographic
outputs.  Such life cycles are better analyzed
with stage-classified models that capture the
most biologically important transitions.

Formulating a Stage-classified Model

Stage structured models overcome some of the
shortcomings of the age-classified models.  In
particular, complex social dynamics or breed-
ing systems can be modeled and analyzed with
these models.  Caswell (1989) and McDonald
and Caswell (1993) describe formulation and
analysis of stage-classified models and provide
examples for taxa with a variety of life cycles.
As a first step in formulating a stage-classified
model, the life cycle graph is particularly
important and useful.

We illustrate the development of a stage-
classified model by describing one possible life
cycle graph (fig. 3) for the dynamics of a Boreal
Owl (Aegolius funereus) population in which
some proportion of the population experiences
delayed reproduction.  The stages in the life
cycle are: Node 1—first year birds, Node 2—
second-year birds that did not breed as first-
year birds, and Node 3—’experienced or older’
breeders.  As is often the case in population
models, we assume female demographic
dominance (we therefore model only the female

Figure 3.—A life cycle graph for a population of
Boreal Owls.  Node 1 represents first-year
birds, Node 2 represents second-year birds
that did not breed in their first year, and
Node 3 represents a mixture of experienced
breeder second-year birds and birds in their
third year or beyond.  The arcs (transitions)
between Nodes 1 and 3, and between Nodes
1 and 2 are labeled Gij because they are
compound terms involving the probability of
becoming a breeder at age x, denoted Bx.

segment of the monogamous population).  We
parameterized the life cycle based, in part, on
data collected for a Boreal Owl population in
the wilderness of central Idaho (Hayward et al.
1993).

Parameterization for this stage-classified life
cycle is somewhat more complicated than for a
simple Leslie matrix, mostly because we are
introducing a new transition parameter—the
probability of becoming a breeder.  Transitions
therefore exist whose critical aspect is not
changing age but the change from non-
breeding to breeding status.  We used the
following estimates for the vital rates: first-year
survival, P1 = 0.23, ‘adult’ survival, P

A
 = 0.46 ,

and m = 1.16 female fledglings per female.  We
assumed a 15 percent probability of reproduc-
tion by first-year birds (B1), 65 percent by
second-year birds, and 100 percent by all older
birds.  The 65 percent second-year breeding
percentage points to a potential pitfall in
parameterization.  Remember that some (15
percent) of the first-year breeders become
‘experienced’ breeders and move directly to
Node 3.  The proportion of birds that breed in
their second year but not in their first year, B2,
is therefore 0.588 (0.15 + 0.588 * (1 - 0.15) =
0.65 overall).  Note also that Node 3 will be
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heterogeneous for age—a few second-year and
third year birds that first bred from Node 1 or 2
(shown by reproductive arcs going back to Node
1), a few third-year first-time breeders (via the
arc from Node 2 to Node 3 describing indivi-
duals that were not in the proportion B2 that
first bred in their second year) and returning
experienced breeders, represented by the self-
loop on Node 3.

In the life cycle we have formulated in figure 3,
individuals can move to stages other than the
next numerical stage.  We therefore need a
double subscript for transitions among stages.
We specify such transitions among stages with
the notation G

ij
, where the transition is to Node

i from Node j.  For example, because the
probability of breeding for first-year birds in
Node 1, B1, is 0.15, G31 = P1 * B1 = 0.23 * 0.15 =
0.0345.  Note also that we must specify that
individuals moving to Node 2 were yearling
non-breeders by adding the term 1 - B1 (the
probability of not breeding as yearlings).  The
additional ‘change of status’ elements, Bx and 1
- Bx, represent the most significant difference
between the formulation for an age-classified
versus a stage-classified model.  Other possible
stage classification terms could include greater
age-specificity incorporated in additional
nodes, parameters describing growth (e.g., for
life cycles where size is more important than
age in determining survival or fertility) or nodes
describing territory quality (the arcs would
then describe the probability of obtaining high
versus low quality territories).  The possibilities
are limited only by our ability to estimate
important transitions in the life cycle.

ANALYSIS OF THE MODEL

The parameter estimates for vital rates (transi-
tions) in the life cycle graph are converted to
the equivalent matrix formulation (fig. 4), and
then analyzed using standard matrix tech-
niques.  Although the calculations can be made
rather easily employing widely available soft-
ware, we emphasize the importance of correctly
formulating the life cycle graph and its constit-
uent transition values.  It is difficult to obtain
reliable estimates of stage specific survival and
reproduction—misformulation of the life cycle
graph will lead to incorrect conclusions.  Time
spent on carefully formulating the life cycle
graph to account completely for all possible
transitions is negligible compared to the field
effort necessary to collect accurate data—but it
is equally essential.

Given a correctly formulated life cycle graph
and its corresponding matrix, we can assess
important parameters of the population dyna-
mics.  Caswell (1989) and McDonald and
Caswell (1993) describe methods to calculate
the demographic metrics given in table 1.  In
the context of providing input for studies of
habitat associations, sensitivity analysis and
the measurement of individual fitness are
arguably the most important metrics.

Demographic Sensitivity, Elasticity and
Fitness Analysis

Demographic sensitivity means the sensitivity
of λ (population growth) to changes in partic-
ular demographic rates.  Sensitivity measures
the impact on λ of changing the absolute mag-
nitude of a particular vital rate (say second-
year survival) relative to changing other vital
rates.  An extension of the sensitivity analysis
is elasticity analysis, which assesses the
proportional sensitivity of λ to change in a vital
rate.  Both sensitivity and elasticity are useful
measures.  One advantage of elasticities is that
they are weighted by the magnitude of the orig-
inal arc in the life cycle.  Thus, arcs of very low
magnitude tend to yield lower elasticities, even
if they are quite sensitive.  For example, λ might
be very sensitive to a change in the probability
of breeding as a yearling.  If, however, that is a
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Figure 4.—(a)  Matrix corresponding to the life
cycle graph in figure 3.

(b)  Matrix of numeric values corres-
ponding to the graph in figure 3.
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very rare event (say only 1 percent of owls
breed as yearlings), and is unlikely to respond
to changing management practices, we might
be better guided by elasticities which will
emphasize vital rates that are of large current
magnitude and that may be more responsive to
changes in management.  A second advantage
of elasticities is that they sum to 1.0, providing
a straight forward basis for comparing elastici-
ties across varied life histories.

Eigenvalue analysis of the projection matrix
yields the elasticities and sensitivities.  Mc-
Donald and Caswell (1993) provide an access-
ible explanation of the necessary calculations.
Kroon et al. (1986) also discuss the uses and
computation of elasticities.  The computations
can be performed most easily by employing
software designed for matrix algebra (e.g.,
Mathematica, MathCad, RAMAS).

Elasticity analysis of our example life cycle for
boreal owls (fig. 3) indicates that survival of
breeding adults is by far the most important
transition (fig. 5).  Only two other transitions
stand out:  reproduction by adults and the
transition from breeding as yearlings to
becoming ‘experienced’ breeders.  We can also
calculate the mean age of the experienced and
older breeders in Node 3 ( x  = 4.3 ± 3.0) as
developed by Cochran and Ellner (1992) and
other metrics outlined in table 1.

In a few cases, data may be sufficient to com-
pute fitnesses directly for different habitats—
possibly the ideal case for habitat analyses.
McGraw and Caswell (1996) show that with
data on lifetime reproduction and age at death,
one can calculate an individual’s ‘population
growth rate’, λ, that serves as an integrated
measure of fitness.  They also show that even
where data are incomplete, powerful analyses
are possible.  The technique is straightforward
—the fitnesses are computed from the domin-
ant eigenvalue of the reproductive outputs (half
the offspring production, because our analyses
are restricted to females) in the top row and
survival values of 1.0 in the subdiagonal, with
the dimensionality of the matrix equaling the
life span of the individual.  McGraw and
Caswell (1996) provide examples from two long-
term avian studies.  By calculating a set of
individual fitnesses across different habitats,
one could directly assess the fitness conse-
quences due to the habitat differences.

USING THE RESULTS FROM AN
ELASTICITY ANALYSIS

Matrix models can be a powerful supplement to
developing owl habitat models in at least two
ways.  First, it can provide the focus for gather-
ing field demographic data.  Second, it can
highlight the most important life cycle transi-
tion for the species, and thereby guide the
development of models customized to address
the habitat variables most important to the
population dynamics.  We briefly discuss both
of these.

Understanding the Life Cycle

A matrix model can help focus our field efforts.
For example, our boreal owl model suggested
that ‘adult’ survival was of overwhelming
importance.  The results suggest that field
effort devoted to greater understanding of both
variation in survival and the factors affecting
survival would be particularly useful.  Studies
of clutch size, fledging success and other facets
of reproduction, on the contrary, may be less
worthy of intensive effort.  The model can also
guide the development of habitat models by
ensuring that they incorporate the critical
transitions in life cycle.  The results of our
Boreal Owl model suggests that any habitat
model will need to incorporate features that
affect ‘adult’ survival.  This should, for
example, emphasize studies on winter habitat
and roosting site requirements.

Figure 5.—Life cycle graph corresponding to the
Boreal Owl data shown in figures 3 and 4.
Values represent elasticities for the three
most important transitions in the life cycle.
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Identifying Key Habitat

Building a sound conservation strategy for a
species demands an understanding of the effect
of habitat change on important demographic
processes.  Many studies of habitat relation-
ships examine differences in used and available
habitat, avoiding the question of how habitat
characteristics are linked to demographic per-
formance.  It is not always possible to measure
demographic performance in different habitats.
However, when we do measure demographic
performance as a metric to gage habitat quali-
ty, what metric should be used to compare the
quality of habitats?

Matrix modeling provides a powerful tool to
help focus habitat studies.  Through elasticity
analysis we can identify the demographic tran-
sitions most important in determining popu-
lation growth.  We can then design habitat
studies that focus on the habitat elements
most important to sensitive or elastic stages of
the life history.  We thereby provide a strong
link between demography and habitat char-
acteristics.  By measuring the more ‘important’
vital rates in conjunction with our studies of
habitat characteristics, we can rank habitats,
in terms of quality, based on a defensible
metric.  In some cases we may even have the
luxury of directly comparing individual fitness
across different habitat types.

Insights from elasticity analysis can also help
us identify WHAT habitat characteristics to
measure.  For instance, if elasticity suggests
that adult survival is an important transition,
and natural history observations indicate that
predation is an important form of mortality for
adults, our focus in habitat studies might
change.  Consider the potential difference in
focus if we stress measures of reproduction
(clutch size, fledging success) in a cavity nest-
ing owl versus survival of adults.  Management
may focus on snag management in one case
and characteristics related to predator risk for
adults in the other.  Elasticity analysis, then,
may help us identify key groups of habitat vari-
ables to quantify during our studies of habitat
associations.  Without the insights provided by
matrix analysis, we might have overlooked
these habitat characteristics.

CONCLUSIONS

Matrix population models can help us; (1)
determine what demographic characteristics to

measure during our studies of habitat associa-
tions, and (2) focus on the habitat characteris-
tics that have the greatest impact on popula-
tion growth.  Matrix models therefore represent
an important tool in the design and implemen-
tation of owl habitat studies.

We caution, however, that applying matrix
models to improve the design of habitat studies
should not lead us to approach our work with
tunnel vision.  Although, matrix methods can
point toward critical portions of a life cycle, we
should not lose sight of the importance of other
transitions.  Reproduction by young birds may
dominate an elasticity matrix, suggesting the
importance of breeding habitat.  However, this
does not indicate that successful management
can neglect habitat that is important for other
life cycle functions.  Obviously, if all the poten-
tial nest sites are gone, it doesn’t matter how
insensitive one was to changes in reproductive
transitions.  Instead, the matrix results indi-
cate where the greatest gains may be realized
in focused habitat improvement efforts.

For many biologists one of the greatest benefits
of matrix modeling may come in the process of
building the life cycle graph based on the life
history data they have for their species.  Build-
ing the graph can highlight the complexity of
possible transitions and identify field data
requirements.

The paucity of data on survival and reproduc-
tion may represent a barrier to application of
matrix models in owl research and manage-
ment.  However, the ease of applying these
models provides the opportunity to use them
even in the face of sparse demographic data.
We can learn from matrix models by exploring
the behavior of the model given different
assumptions regarding the vital rates of our
target population.  Therefore, we don’t need
perfect estimates of vital rates.  We suggest
playing WHAT-IF GAMES by observing the
behavior of the elasticity matrix under a range
of plausible vital rates.  Frequently, analysis
under assumptions that span the range of
plausible values will lead to similar results,
consistently identifying the same group of
important transitions.
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