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A STAND OPTIMIZATION MODEL DEVELOPED FROM DYNAMICAL MODELS FOR
DETERMINING THINNING STRATEGIES

Oliver Chikumbo, Iven M.Y. Mareels, and Brian J. Turner1

ABSTRACT. —The “curse of dimensionality” common in dynamic programming (DP) formulations of the
thinning strategy problem has previously been overcome by applying the neighborhood storage location concept.
However, several forest analysts are aware that the solutions obtained in this manner are suboptimal. Even worse,
there is no easy way of determining how far a particular solution may be removed from optimality. Here we present
an approach using dynamical models. The application of control theory can then be used to effectively overcome
the dimensionality problem. Moreover, we may exploit optimization routines capable of guaranteeing optimality.
In this paper, we describe how this approach has been used to address the thinning problem for Pinus radiata D.
Don plantations in the Australian Capital Territory.

INTRODUCTION

The management of a plantation forest includes, among other things, defining operational area units and
estimating the growth and yield for each unit under a set of alternative activities (harvesting/silvicultural
strategies). Each land unit may have different levels of site productivity, making it difficult to determine an optimal
harvesting strategy at a stand level. Forest analysts have used multistage optimization to determine the harvesting
strategies that best satisfy specific objectives. Because of the daunting mathematical extent of optimization
formulations, “simulators” have been used to determine silvicultural strategies, but these cannot indicate whether
the outcomes are optimal or suboptimal. Simulators are computer-based, decision-support systems that enable
experimentation on a model rather than on the forest itself to evaluate the forest behavior under different
conditions (Ljung 1987). Multistage optimizers enable control or guidance, generally defined as the directed
influence, on a dynamic system to achieve a desired outcome (Luenberger 1969).

Dynamic programming (DP) is a technique commonly used by forest analysts to solve multistage optimization
problems for harvesting stands. However, the technique has not been implemented without presenting its own
difficulties that Bellman (1957) called the “curse of dimensionality.” The curse of dimensionality results from the
need to define all the possible states at each stage of a DP formulation that can be computer-memory demanding,
even for small DP problems. To counter the dimensionality problem, forest analysts have developed a DP
formulation that requires the user to specify possible states that are common to all the finite stages in the planning
period (Buongiorno and Gilless 1987). For brevity, this formulation will be referred to as the “forestry-DP.” The
forestry-DP formulation requires specification of a finite number of states (usually two to three states at each stage).
The choice of these states is based on expert knowledge of the forests in question. The stages are normally specified
at equal intervals of 5 to 10 years. This neighborhood storage technique is very limiting in that decisions are
confined to long interval points and there is no exhaustive search of the states at each stage. Therefore, there is no
guarantee of finding a global optimum over the planning period and there is no easy way of checking whether the
solution is suboptimal or optimal. The forestry-DP formulation can be described as a heuristic method combined
with recursive optimization. In contrast, DP employs the embedding technique that enables an exhaustive search of
all the possible states at each stage in a backward recurrence mode.
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Arthaud and Klemperer (1988) concluded that neighborhood storage combined with a forward recursion
optimization resulted in violation of the principle of optimality; this formulation led to loss of paths that would
have been optimal over the long run, but were discarded because of lower values (generated through thinning).
Some authors (e.g., Anderson and Bare 1994; Arthaud and Klemperer 1988; Arthaud and Warnell 1994; Pelkki
1994; Valsta 1994) have deduced that they may be just achieving local optima.

Chen et al. (1980) concluded that some of the problems of the forestry-DP formulation were caused by the use of
inappropriate growth models that did not relate directly to the decision variable and the lack of a clear definition of
the conditions that had to be met for optimality.

In this paper, basal area models are developed for Pinus radiata D. Don plantations in the Australian Capital
Territory (ACT) from time-series data describing basal area and stand density. These models are discrete-time
“dynamical models.” Dynamical models are common in the field of systems engineering and describe dynamic
systems where control and controlled variables are identified. For a first-order, discrete-time dynamical model, the
current observation at time t depends on the previous observation at time t-1. For a second-order model, the
observation at time t is dependent on the previous observations at times t-1 and t-2. Time is implicit in a discrete-
time dynamical model and is used as an integer to indicate equidistant observations (Chikumbo 1997). Dynamical
models may be represented using input/output (thinning/basal area) variables only or using input/state/output
(thinning/basal area, stand density/basal area) variables. The input/state/output representation enables one to steer
a dynamic system from an initial state to a final state via the control action. A multistage optimization problem for
determining optimal thinning strategies was formulated based on a state space model and solved using the
maximum principle (MP), a technique similar to DP (Pontryagin 1956).

Data

The softwood plantation resource in the ACT (149° E, 35°19 min) has a net productive area of 14,500 hectares
(ha) with P. radiata as the main species. The plantations were established on degraded pastures and land cleared of
eucalypt forest. The annual rainfall in the ACT ranges from 610 to 1,140 millimeters (mm). The soils are generally
poor and are derived from acid volcanics, granodiorites, and sediments. The plantation area comprises Kowen,
Pierce’s Creek, Stromlo, and Uriarra forests. A summary of rainfall and geology of the four forest areas is given in
Table 1.

Table 1.—Rainfall and geological characteristics of the forests in the Australian Capital Territory

Forest Area Rainfall Geological Characteristics

Age Description

mm

Kowen ± 650 Ordovician mostly slates
Stromlo ± 700 Upper Silurian variable, mainly acid volcanics and porphyry
Pierce’s
Creek

± 800 Silurian to Devonian mostly granite to granodiorite

Uriarra East ± 800 Upper/Middle Silurian Uriarra volcanics/Paddy River volcanics
Uriarra West ± 850 Ordovician sedimentary slates

A 5-year soil survey program is currently being undertaken by ACT Forests Branch on a 150 by 150-meter (m)
grid. This will provide useful information for site-specific silvicultural management.

The data used for model development were collected from a number of permanent yield plots established in the
1940’s through the 70’s by the then ACT Forests Branch, Australian Forestry School, and Commonwealth Forest
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Research Institute. The plots ranged in size from 0.01 to 0.1 ha and usually had a rectangular shape. The stocking
densities at establishment ranged from 750 to 2,990 stems ha-1. Thinnings were mainly frequent and light, making
it difficult to estimate their effects on growth volume production. In total, the data were from 240 plots that had
been measured on 3,637 occasions. Table 2 summarizes the data from the four forest areas in the ACT.

Table 2.—Minimum, mean, and maximum values of stand variables of the four ACT forest areas

Forest Area Number of
Plots

Age Site Index Basal Area Stand Density

min mean max min mean max min mean max min mean max

- - - - years - - - - - - - - - m - - - - - - - - m2 ha-1 - - - - - - stems ha-1 - - -

Kowen 72 4 22.8 44 16.1 20.9 25.6 1.7 31.4 79.9 151 713 2,903
Pierce’s Creek 50 5 22.8 57 18.7 22.5 27.2 1.1 30.9 58.6 51 679 5,182
Stromlo 3 9 23.1 39 19.1 20.2 22.2 9.4 27.6 38.4 173 588 971
Uriarra 115 4 20.9 51 16.5 24.9 31.7 0.5 31.5 99.9 9 774 2,976

MODEL DEVELOPMENT

There was no consistency in timing and intensity of thinning from the permanent growth plots. Therefore, to
develop a basal area model responsive to thinning at different intensities and timing, we selected prolonged periods
of basal area measurements between any two successive thinnings from the permanent plots. Interpolation was
carried out for any two successive data points that were more than 1 year apart so as to have annual records. We
did this for each of the forest areas. Basal area models were identified, using subsets of the series of basal area
measurements from various plots for each of the forest areas. Kowen, Pierce’s Creek, Stromlo, and Uriarra had 10,
19, 5, and 21 basal area models, respectively. These models with their statistical properties are given in appendix I.
The identification process of the basal area model consisted of a two-step approach:

1.  For each subset of the series of basal area measurements, we identified a first order, discrete-time dynamical
model that explained the general basal area growth trend.

2.  We regressed the parameters of the models in 1 against initial stand density and site index for each forest area.
The subsets of basal area measurements combined for each forest area had a small range of site indices, which
resulted in site index not being used in the analysis. Therefore, we modeled these parameters using
polynomials that were functions of stand density for each forest area.

The model was as follows:

(1) BA(t) = aBA(t-1) + b

where

t = time (years);
x = initial stand density (stems ha-1);
BA = stand basal area (m2ha-1);

(2) a = f(x);

(3) b = f(x).

Table 3 gives the polynomials for parameters a and b for the four forest areas.
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Table 3.—Forest areas, their polynomial functions for a and b, and R-squared values

Forest Area Polynomial Functions R-Squared Values

Kowen a=-0.0000000486x2+0.0000813x+0.868
b=0.00000132x2-0.00207x+5.085

0.80
0.78

Pierce’s
Creek

a=-0.0002x+1.0339
b=0.0102x-0.5463

0.82
0.92

Stromlo a=-0.0000000956x2+0.0002x+0.814
b=0.0000123x2-0.01718x+9.908

0.68
0.81

Uriarra a=-0.000037x+0.9941
b=0.002x+1.7606

0.77
0.89

A simulation of the basal area models for three initial stand densities of 500, 1,000, and 1,500 stems ha-1 showed
that a high initial stocking achieved a basal area asymptotic limit (as dictated by site quality) sooner than a lower
initial stocking (see Fig. 1). Stromlo forest showed similar trends but could not be simulated using the same initial
stocking as the rest of the other forests. This was because the Stromlo model was based on only five models with
971 stems ha-1 as the highest stocking density. Therefore, the Stromlo model could not be reliably extrapolated
beyond 1,000 stems ha-1. A low stocking showed a slower rate in taking advantage of the available site compared
with the high stocking. For all the forest areas, the basal area gain was not substantial for a higher stocking. The
comparison between high stocking and low stocking for the ACT forests suggests that thinning has to be minimal
otherwise the residual trees may not have the ability to fully occupy the site (maximizing basal area per tree).
Rotations also have to be as long as possible for value production regimes such that the final crop can reach the
largest size that a site can allow.
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Figure 1.—Simulation of basal models for three initial stand densities on each of the ACT forest areas.

Kowen forest showed very little variation in basal area growth from the three simulations. The area has poor,
shallow soils and low rainfall. The ACT Forests Branch has confirmed that they aim to maintain basal area at 20
m2 ha-1 because of low productivity in this forest area. Pierce’s Creek and Uriarra forests showed comparatively
higher basal areas at age 30 because of the relatively better soils and rainfall.

Optimal Control

We considered the following optimal thinning problems,:

(4)  minimize
u z

t

n
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for volume production and,
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for value production. The cost functional Jvol is a measure of the total basal area harvested. The initial stocking is
expressed as z, which has to be optimized. These minimizations are subject to the following constraints, the system
equations (dynamics),

(6) x(t+1) = x(t) - u(t)

(7) BA(t+1) = a(x(t))BA(t) + b(x(t))

where a(x) and b(x) are defined in Table 2. The above system equations have to be completed with the initial
conditions,

(8) x(0) = z > 0, BA(0) = 0,

terminal constraint,

(9) x(n) = u(n),

and upper and lower bounds on thinning:

(10) 0 0≤ ≤ ∀ =u t x t t n( ) ( ), ,... , -1

For the above formulation n=25, but this also could have been left as a free variable to be optimized.

Notice that u(t)/x(t) indicates the fraction of trees harvested at time t. The cost functional Jval puts more emphasis
on bigger trees, due to the presence of the weighting factor BA(t)/x(t) which is the average basal area per tree.
Given more information on costs of establishment, thinning, pruning and so on, an economic component can be
incorporated in the cost functional to be optimized as well as in the constraints that have to be satisfied.

A software package called MISER (Jennings et al. 1990) was used to solve the thinning optimization problem. The
algorithm in MISER uses the maximum principle technique for solving optimal control problems. The maximum
principle employs the Kuhn-Tucker method (Dixon 1972) for minimizing a function subject to equality and
inequality constraints. This optimization problem can be viewed as the minimization of a functional Jvol or Jval of
n+2 variables, i.e., and u(0),…, u(n) and z, subject to a set of equality and inequality constraints as described in
equations 6 through 10. For all of these constraints, the appropriate Lagrangian multipliers can be determined and
then optimized as an augmented cost functional. This can be solved efficiently using a gradient-based search
algorithm, such as in MISER.

It is important that the functions used in formulating the optimization problem be sufficiently smooth with respect
to the control variables to allow for the differentiation. This is the case with the thinning problem where all
functions are at least twice differentiable with respect to the control variable. By formulating the problem in this
manner, one can solve the necessary local optimality conditions for a candidate optimal thinning strategy that can
be refined to satisfy all constraints. This can be achieved without the need for a global search, thus alleviating the
dimensionality curse. A solution found this way (by MISER) will be a local minimum of the optimization problem
at hand. Sometimes there is no guarantee that the locally optimum solution is the global minimum. This is not an
issue with problem formulation 6 through 10 because there is no other minimum for such a relatively simple
formulation (only two state variables).

RESULTS

Kowen and Stromlo forests had similar MISER outputs. Both value and volume production regimes had an initial
stocking of 677 stems ha-1 with a final crop of 122 and 140 stems ha-1 respectively. Thinning was light and annual.
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We optimized the value production formulation again with a terminal constraint set at ages 30 and 35. In both
cases, the crop was maintained at 122 stems ha-1. This suggested that the final crop has to be retained for as long as
possible for the residual trees to take complete advantage of the available site. The interpretation of the MISER
output was that an initial stocking of 600 to 700 stems ha-1 be adopted and light thinnings carried out at stages best
determined by including financial costs in the optimization formulation. The final crop may be harvested at any
time from age 25 for volume production and retained for longer periods for value production (i.e., rotation lengths
of 35 years or more). ACT Forests Branch is moving towards lower stocking regimes and establishments of 650
stems ha-1 in Kowen forest.

Pierce’s Creek and Uriarra forest areas had similar thinning regimes. There were minimal benefits in thinning for
both value and volume production regimes such that exercise became one of optimizing for the initial number of
trees as for Kowen and Stromlo forests. The output from MISER for a volume production regime was one with an
initial stocking of 880 stems ha-1 and an annual thinning of 37 stems ha-1 until there was no crop at age 25. This
result was interpreted as an initial stocking of the order of 800 to 900 stems ha-1 with light thinnings again best
determined by financial formulation of the thinning problem. For the value production regime, the MISER output
had an initial stocking of 677 stems ha-1 with an annual thinning of 22 stems ha-1 and a final crop of 122 stems ha-

1 at age 25 that should be maintained as long as possible. The interpretation was that value production had an
initial stocking of 600-700 stems ha-1 with light thinnings, as suggested for Kowen and Stromlo. ACT Forests
Branch agreed with these conclusions because the Pierce’s Creek and Uriarra forest areas have comparatively
better soils and rainfall than Kowen and Stromlo forests. In fact, fertilization is an option for ACT Forests Branch.
At this stage there is no pulpwood market, and therefore it is important to estimate the initial planting density.

The thinning strategy model has a huge potential as a management tool in addressing silvicultural questions that
would normally require experimental plots to be established and analyzed over a number of years. Financial
parameters incorporated in the model would make the assessment more realistic.

CONCLUSIONS

The thinning problem has been solved using dynamical models and formulating a multistage optimization
problem. The curse of dimensionality problem has not been encountered as a result of using the maximum
principle, despite treating each year as a decision stage. The interpretations of the MISER output suggested
similarities with the current recommendations of silvicultural strategies to be adopted by the ACT Forests Branch,
which have been derived from years of experience by field foresters.
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