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ABSTRACT.—The purpose of this work was to develop a diameter distribution model that adequately represents
the observed data from Nova Scotia's fully stocked research Permanent Sample Plots (PSP). We have been able to
develop afamily of Weibull distributions whose parameters depend only on the stand average diameter. Using both
chi-square and Kolmogorov Smirnov tests, we tested the hypothesis that the distribution of diameters observed on
individual plots is from that member of this family of distributions whose parameters correspond to the plot mean
diameter. At the 99 percent level we would not reject this hypothesis on all except 10 of the 283 plot samples. At
the more stringent 95 percent level, we regject this hypothesis only for 32 out of the 283 plots.

INTRODUCTION

This work came about while completing the normal yield tables for Nova Scotia hardwoods since we wanted to
have a quantitative description of the diameter distribution of the trees making up a stand. In the older softwood
normal yield tables (Nova Scotia Department of Land and Forests 1990), this distribution of diametersis given as
three numbers, namely the volume available in diameterslarger than 1.5, 9.1, and 14.1 cm diameter at breast
height (d.b.h.). These indicate total volume plus merchantability limits of two classes of products. The problem
with this approach is that critical diameters for merchantability change depending on harvest technology being
used. Another reason for investigating the development of a diameter distribution is to enhance the capabilities of
the Nova Scotia Geographic Information System (GIS). The GIS datawill include only a single stand average
diameter. The ability to project a diameter distribution from this single number will be useful in developing
guantitative assessments of the forest cover and of its economic value.

Thereisalong history of using the Weibull distribution to model diameter distributions (Clutter et al. 1983, Bailey
and Dell 1973). Obvioudly, this influenced us to use the Weibull as our distribution of choice. The Weibull
distribution requires the estimation of three parameters. For any given stand, it is not difficult to estimate the
parameters that best describe that stand. A standard technique involves Maximum Likelihood Estimators (MLE).
Law and Kelton (1989) discuss parameter estimation in general and give methods for several standard
distributions, including the Weibull. The derivation of MLE's for the Weibull was originally given by Harter and
Moore (1965). Bailey and Dell discuss various approaches taken to estimation of these parameters for forest stands.

Our problem is unusual in that we do not want to estimate the parameters for any particular stand. Rather, we want
to develop a continuous family of distributions that depend only on the single variable of stand average diameter.
This paper thus attempts to answer two questions. First, how can we develop the parameters of the Weibull
distribution as a function of stand average diameter? Second, does the family of distributions do a reasonable job of
describing the distribution of diameters when applied to any particular stand? As will become evident, our
approach is heuristic in two aspects. First, most natural stands have an understory with trees of very small
diameter. These are often large in number but insignificant in basal area. If these are included in the diameter
distribution, this will almost inevitably mean a bimodal distribution. We devel oped a screening mechanism
designed to filter these from our data base. Second, fitting the location parameter for a Weibull is somewhat
problematic. Our choice here has been heuristic and is open to criticism. However, it appears to work well and we
will argue that it does not significantly influence the results.
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Briefly, our approach has been to first group the data from our plots into diameter class "superplots’. We then carry
out MLE estimates of the parameters for each superplot and attempt to fit smooth curves to these parameter
estimates using the average diameter of the superplot as the variable to be regressed against the parameter
estimates. It turns out that the curves we fit are quite reasonable approximations to the MLE estimates. The
correspondence between the superplot histograms and the density functionsis very strong. Even more encouraging,
if we apply the Weibull functions to the individua plots, a very large portion of the plots give good hypothesis
testing results.

We originally expected that the diameter distributions of treated (thinned) stands would be greatly different from
the natural stands that we used for the normal yield tables. We were surprised to find that this was not the case.
The results of hypothesis testing using the Weibull distributions on the entire set of research permanent sample
plots (PSP's) gave results very comparable to tests restricted to the fully stocked control plots that we use for the
normal yield tables.

OUR PROCEDURE

The data was taken from Nova Scotia's PSP’ s. There are 80 plots identified originally as the fully stocked stands
used to represent the normal yield. Most were first measured in 1978 and remeasured every 5 years since. We have
atotal of 283 plot measurements. Asis common practice, we treat the remeasurement data as independent samples.

Our approach isto first group the data from the individual PSP's according to plot average diameter (d ). We used
1 cm diameter classes. It isimportant to clarify what we mean by the average diameter d of the trees on the plot.

Thed isthe diameter of the tree of average basal area on the plot. Thusif we have sample diameters from n trees
ontheplot (d1, d2, ..., dp), then :
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The Weibull distribution has a simple analytic form. There are three parameters, commonly referred to as the
location (I ), scale(b) and shape (a) parameters. Using these parameters, if the random variable D, the diameter of
atree on aplot, has a Weibull density function f(D), then

D) =ab @ (D-1)a 1eg (@)D jtp)
=0 otherwise

and the corresponding cumulative distribution function is F(D) where

FD)=1-& (OBt
=0 otherwise.

Asindicated earlier, we set out to find an expression for a, b, and| asafunction of stand average diameter and to
then test the performance of this family of distributions.

The Insignificant Basal Area Test

Almost every plot contains a number of small trees that are unlikely to become crop trees because they are
undergrowing the main stand. This may correspond either to ingrowth or to older trees that have always been
suppressed in the stand. A quite typical situation is small-diameter American beech undergrowing larger-diameter
sugar maple. These trees may be quite numerous but make up an insignificant fraction of the basal area of the main
stand. If we take the time to examine the trees on the plot manually, it is usually not too hard to decide which trees



have no potential as crop trees . However, we need an automated procedure for routine processing. We developed a
screening test that has proven to be quite effective. Our approach is based on the idea of a basal-area-weighted
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average diameter (d). The calculationis:d= g di— 5 =°—2
i=Ln A9 adq
j=l-n j=l-n
Theideaisto delete trees that have an insignificant effect on this basal-area-weighted diameter. The test quantity
g3
we useis diegt = .10 d /n and we discard atree if — : < diegt -
a d?
j=l-n

The motivation of thistest isthat, since n diest =.1d, it isimpossible to discard enough trees to change this basal-
area-weighted diameter by more than 10 percent .

Using the example plot 3911, é dj2 =9925.2, and there are 28 trees with positive diameter for an average
jzll n
diameter d =185 (Figurel). The diest = .0736 so that we discard any trees with have di3 <.0736* 9925.2 =

730.49, which corresponds to dj < 9.006 cm. Applying this test to the plot 3911, we get the Figure 2 histogram
where the left-hand column now contains both the dead and discarded trees. The average diameter of the

remaining treesis d =21.12 cm.
Plot 3911 in 1988 illustrates the problem. Asindicated in Figure 1, there are 5 dead trees on the plot. The larger

trees are all sugar maple. There are three beech with diameters less than 4 cm and three white spruce with
diameters from 4-6 cm. The next smallest tree has a diameter of 9.3 cm.
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Figure 1.—Histogram of diameterson plot 3911, 1988. | Figure 2—Histogram of diameters on plot 3911, 1988
after applying test for insignificant basal area.

We applied this discarding procedure for trees of insignificant basal areato all of the plots., Trees were discarded
for 106 of the 283 plots. Only 13 plots were problems in the sense that the deleted trees accounted for more than 5
percent of basal area. In no case did the discarded trees account for more than 7 percent of the total basal area of
the plot even though, in some cases, more than half of the total trees were discarded (e.g., plot 4111 in 1978) . This
procedure is simple and quite effective.

Grouping into Diameter Classes




After deleting the trees of insignificant basal area from each plot, the average diameter d was calculated for the
plot, and all the remaining trees on the plot were added into the diameter class corresponding to the plot average

diameter d . Asindicated earlier, we used 1 cm diameter classes for the aggregation. We computed the average and
the minimum diameter in each diameter class. The results are shown in Table 1. We plotted the minimum
diameter as a function of the average diameter of the d.b.h. class. the results are shown in Figure 3. Although a
straight line represents the minimum diameter very well, we fit aregression line to a second-order equation. The
least squares fit leads to the following function.

Minimum diameter = 0.4240 d -0.0020 d

This function is plotted on Figure 3. The line below it is half of the minimum diameter line. A natural question
arises as to how to deal with this minimum diameter. On the one hand, we could ignore it completely and try to fit
Weibull distributions in which the location parameter | = 0. However, since there is such a strong trend in the
minimum diameter, we have decided to make use of thisin developing alocation parameter for the diameter
distributions. Our approach has been simple in the extreme. We cannot use the curve of minimum diameter
directly since thisis only aleast squares fit to sample data and some observations lie below this curve. The Weibull
distribution impliesthat it is not possible to have any observations that lie below the location parameter. Our
simple choice has been to use 75 percent of the minimum diameter line for our location parameter. Aswill be seen,
this simple choice gives good results. However, it may be worthy of further investigation.



Table 1.—Statistics on Diameter Classes

d.b.h. Number ClassAverage  Class Minimum
Class of Trees Diameter Diameter
cm ----Ccm----
2-3 103 2.377 1.200
34 51 3.710 1.800
4-5 74 4.476 2.000
5-6 279 5.670 2.700
6-7 293 6.450 3.000
7-8 354 7.561 3.900
8-9 227 8.515 4.200
9-10 259 9.460 4.200
10-11 271 10.474 4.800
11-12 251 11.402 5.500
12-13 282 12.547 5.600
13-14 363 13.549 6.500
14-15 675 14.648 6.300
15-16 619 15.588 6.800
16-17 717 16.583 7.600
17-18 742 17.600 8.100
18-19 858 18.543 7.500
19-20 607 19.530 8.600
20-21 488 20.409 9.300
21-22 312 21.554 9.700
22-23 129 22.389 10.200
23-24 102 23.370 11.200
24-25 72 24.472 12.200
25-26 99 25.49 12.400
26-27 52 26.580 11.700
27-28 45 27.116 13.600
28-29 21 28.185 14.900
29-30 20 29.434 15.200
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Figure 3.—Plot of minimum diameter as a function of class average diameter.



Table 2—MLE Estimates of the Shape and Scale Parameters

Number of Average Location Shape Scale
d.b.h. Observations Diameter Parameter (1) Parameter(a) Parameter (b)
Class

cm cm
2 103 2.387 0.751 2.95248 1.75791
3 51 3.710 1.159 2.24311 2.69253
4 74 4.488 1.397 281771 3.31149
5 279 5.675 1.756 2.21469 4.12462
6 293 6.455 1.990 2.23072 4.70491
7 354 7.565 2.320 2.67054 5.60782
8 227 8.516 2.599 3.44816 6.36526
9 259 9.463 2.875 2.39152 6.98182
10 271 10.479 3.168 243799 7.76027
11 251 11.404 3431 3.31249 8.57024
12 282 12.549 3.754 2.39408 9.31638
13 363 13.551 4.034 2.33548 10.05730
14 675 14.651 4.337 2.40972 10.92155
15 619 15.589 4.593 2.61117 11.71793
16 717 16.585 4.861 2.67427 12.50934
17 742 17.601 5.132 2.95346 13.36265
18 858 18.546 5.382 2.57950 14.00911
19 607 19.531 5.639 2.90072 14.87957
20 488 20411 5.866 2.55067 15.47276
21 312 21.556 6.158 2.35983 16.28445
22 129 22.390 6.368 2.75982 17.11851
23 102 23.371 6.613 2.46647 17.78338
24 72 24.473 6.884 2.34868 18.60066
25 99 25.495 7.132 2.16640 19.22892
26 52 26.581 7.393 2.90041 20.50533
27 45 27.116 7.520 2.28428 20.64206
28 21 28.185 7.771 2.91684 21.85245
29 20 29.434 8.061 2.97601 22.88152

MLE Estimates of Shape and Scale Parameters

Once the location parameter is given, MLE estimates of the shape and scale parameters can be computed from
equations originally developed by Harter and Moore. Law and Kelton give a simple Newton step iteration. This
calculation was programmed in a FORTRAN program called Calcparms.f that is available from the authors.
Convergence to four significant figures of accuracy is obtained in only three or four iterations.

Table 2 gives the results of the MLE estimates of a and b for each d.b.h. class. If we plot the b's as a function of
class average diameter, we see that a straight line fits them extremely well by (Figure 4):

b =-0.2959 +7757 d .

The behavior of the a'sis not as smooth as seen in Figure 5. A least squares fit to a quadratic model gives:
a =2.6744-0.0101 d +0.0003 d 2.



MLE Betas as afunction of diameter class
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Figure 5—MLA Alphas as afunction of diameter class.

If we use the MLE estimates for a and b directly, it turns out that even though b varies smoothly as a function of

d, the density functions do share this property. Figure 6 illustrates the problem where the transition between
diameter distributions is not as smooth as it might be. This is due to the jumpiness of the MLE estimates of a.
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Figure 7.—Diameter distributions resulting from

Figure 6.—Diameter distributions resulting from the Smoothing the MLE estimates of a and b.

MLE estimates of a and b.

To complete our estimation process, we used the equation derived for a and reestimated the b. Once again, a
straight line fits the b's extremely well, but with dlightly different parameters:

b =-0.2877+ 0.7784 d
Asseen in Figure 7, there is now a much smoother transition between diameter class distributions.

VERIFYING THE MODELS
The approach outlined results in a model of diameter distributions that can be summarized as:

Location Parameter

| (d) = 0.4240 d -0.0020 d 2
Shape Parameter

a(d) = 2.6744-0.0101d +0.0003 d 2
Scale Parameter

b(d) = -0.2877+ 0.7784 d



Using these parameters, the random variable D(d ), the diameter of atree on a plot with average diameter d , hasa

Weibull density function (all the parameters and variables are to be thought of as functions of d ):

f(D) =ab @ (D-1)2 1 (D)D) it p 5
0 otherwise

We have two approaches to verifying that our procedures have led to valid results. In Figure 8, we show the density
functions versus a histogram of the data for several diameter classes. Asisvisualy evident there, the fits are very
good. Note that there are quite a few trees in these histograms. For example, as seen in Table 2, the 14 cm class
has 675 trees.

This does not, however, answer the question as to how well the distributions represent any given plot. The
approach that we have taken here is based on hypothesis testing.
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Figure 8.—Plot of histogram vs. distribution for the 2, 6, 10, 14, 18, and 22 cm diameter classes.

Testing Hypothesis of Weibull Distributions

Weran al of the individua plots through both Kolmogorov Smirnov (KS) and Chi Square hypothesistests ( A
FORTRAN program for doing thisis available from the authors). At the 95 percent level with the alpha and beta
parameters computed from the mean diameter, we would reject the hypothesis that the distribution observed comes
from the Weibull distribution, for only 32 of the 286 combinations of plot and year of remeasurement using any
one of the tests. More details are shown in Table 3 below. Not all plots rejected by the KS test were rejected by the
Chi Sguare test and vice versa. Only 10 plots can be rejected at the 99 percent level. Since the distributions were
developed from the aggregated diameter classes, this would appear to be quite reasonable confirmation of the
validity of the approach.

Table 3.—Number of rejected plots using the Kolmogorov Smirnov and Chi Square tests at various levels on
the 283 control plots

283 Control Plots 1122 Permanent Sample Plots
Hypothesis Test Level (%) Hypothesis Test Level (%)
95 975 99 95 97.5 99
Number of KS Rejects 13 6 3 63 42 29
Number of chi-square Rejects 27 16 10 112 71 47

Evenif al of the plots really were from our Weibull distributions, we would have expected to see 14 (283x5
percent) and 3 (283x1 percent) rejects at the 95 percent and 99 percent levels respectively. Thus, these are quite
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encouraging results. The problem plots are confined to 20 of the 80 physical plots. Of the total 32 rejected plot-
measurement combinations, 18 of these can be accounted for by 6 plots (561, 2911, 961, 2271, 3811, and 3671).
Moreover, as we discuss below, in looking at some of these plots, we can question whether they should be
considered typical of plots that we should use to construct normal yield tables (even-aged, fully-stocked stands).

Some Problem Plots and Good Plots

We plotted the histograms for some of the problem plots. These include the problem plots 961, 3671, and 1711. In
doing so, we have preprocessed the raw data using the test of insignificant basal area discussed above. Any such
plots are given a diameter of O, and thus appear in the histogram on the extreme left-hand column. This column
may also include dead trees since these are assigned a diameter of O in the plot measurements.
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Figure 10.—Histograms of Some Plot Data and the Fitted Distribution.

Plot 961 had one tree of 58 cm in diameter in 1983. This tree can probably account for the rejection of the
hypothesis. Plot 3671 is an example of atwo-story stand measured in 1983. Plot 1711 in 1978 had a pronounced
two-story structure. Although this still remains evident in 1983 and 1988, it is not strong enough in these later
yearsto reject the Weibull hypothesis.

We selected plot 411 in 1978 to give some feel for the quality of fit for those plots not rejected by our hypothesis
tests. Although a perfect fit cannot be expected, the degree of correspondence appears quite encouraging.
OTHER SITUATIONS: MANAGED STANDS

We have applied the ideas in this paper to a number of different situations including managed hardwoods and
managed and unmanaged softwoods. The essential ideas appear to work well in all these cases, athough there are
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some differences in the functional form of some of the models. These are reported el sewhere. One interesting point
that we found is that there is o little difference in the diameter distributions between managed and unmanaged
hardwoods that it is not unreasonable to use the same diameter distribution for both. In Table 3, we show the
results of the hypothesis tests for both the 283 control plots used for the normal yield tables and the 1122 hardwood
permanent sample plots that the Province maintains to investigate the effect of thinning and cleaning. As can be
seen there, the percentage of rejected plotsis virtually unchanged. These results were surprising to usinitially.
However, using a simple simulation model, we have been able to offer at least a partial explanation (Gunn et al.
1997).

GENERAL CONCLUSIONS

In trying to model distributions, we do not have available a simple optimization principle equivalent to the least
squares fit that underlies conventional regression modeling. Instead, the onusis on the modeler to choose a
"reasonable distribution™ with desirable properties, and then do hypothesis testing to establish whether it is
defensible to persist in the belief that the distribution is reasonable in face of the data.

In the work reported here, we began with the belief that the Weibull is a reasonable class of distributions to use
based on the long history of use of this family of distributions in modeling tree diameters. Our next step was one of
aggregating the plot data into mean diameter classes and then calculating MLE estimates of the parameters of the
Weibull distribution for each class. Proceeding on the belief that the parameters should vary smoothly from class to
class, we fit low order curves through these parameter estimates to get continuous functions that give all three
parameters (I , a, b) asafunction of stand average diameter. Note that other approaches are possible. For example,
we could have calculated (MLE) estimates for the three parameters for every individual plot and then attempted to
fit regression curves to this much larger (and probably more variable) set of points.

In comparing our density functions to the histograms of the class aggregate data, the correspondence is quite good.
Even the visua test provides ample evidence of this. Some might argue that this good correspondence between the
class aggregate data and the density functions that we have derived is al the verification that is necessary. In
arguing this, one would take the view that class aggregates are more likely to give a clearer picture of province-
wide average results than the results on any individual plot, and that the individual plots are not really relevant.

Although not necessarily disagreeing with the above viewpoint, we took the position that it would at |east be
interesting to learn the proportion of plots for which we would be forced to reject the hypothesis that the trees on
that plot had diameters drawn from our calculated distribution (given the average diameter of the plot under
consideration). We have tested this hypothesis for every plot using two different tests. In both cases, we conducted
the tests under the assumption that we were given all parameters of the distribution. This assumption can be
guestioned in two regards. First, each plot did play a small part in estimating the parameters of the class within
which that plot fell. Second, the trees on the plot are used to compute the plot average diameter, which in turn
leads to the calculation of a,b, and | . Given that this assumption is valid, then we obtained the result that we reject
the hypothesis that the plot data corresponds to our distribution only for quite a small proportion of cases, even at
the 95 percent level. As aresult we can conclude that our approach does provide a not unreasonable method for
estimating diameter distributions for the type of stands represented by our data.

DISCLAIMER

The main purpose of this paper is to report on the process of developing the diameter distributions, not the results.
The current recommended approach of the Nova Scotia Department of Natural Resources may have changed due to
either updated data or a change of thinking within the Department. Anyone wishing information on Nova Scotia's
hardwood normal yield tables should consult the Forestry Branch, N.S. Department of Natural Resources, P.O. Box
68, Truro, Nova Scotia B2N 5B8.
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