
1

THE DESIGN OF A GENETIC ALGORITHM BASED SPATIALLY CONSTRAINED
TIMBER HARVEST SCHEDULING MODEL

David S. Mullen and Ralph M. Butler1

ABSTRACT.—This paper presents the design of a spatially constrained harvest scheduling model that uses a
genetic algorithm (GA) as the optimization technique. The GA manipulates a population of permutations of the
identification numbers of the stands being scheduled. The evaluation function of the GA uses the permutations as
ordered lists providing the order by which to place stands into the schedule. Stands are placed into the schedule by
an heuristic scheduling algorithm. In timed test runs, the GA based model found solutions averaging 3.5% better
than a Monte Carlo integer programming based model.

INTRODUCTION

A large scale operational harvest scheduling problem might contain more than a thousand timber stands; span a
planning horizon of fifteen or more periods; include minimum and maximum restrictions on wood flow by period;
and have spatial green-up restrictions of one to several periods. Problems such as this are difficult combinatorial
optimization problems to which a wide variety of optimization techniques have been applied (Brodie 1991;
Lockwood 1993; Murray 1994). Genetic algorithms are a class of optimization techniques that have been applied
successfully to a number of other difficult scheduling problems (Davis 1991; Fang 1992; Bierwirth 1995). This
paper presents the design of a spatially constrained harvest schedule optimization model2 that uses a combination
of an order-based genetic algorithm and an heuristic scheduling algorithm as the optimization techniques.

BACKGROUND

A wide range of optimization techniques have been applied to spatially constrained harvest schedule optimization.
Following are some background notes on some of these techniques.

Mathematical Programming Techniques

Both linear programming (LP) and mixed integer programming (MIP) have shortcomings when applied to large
scale spatially constrained harvest scheduling. The main problem with LP is that solutions usually have some
stands split among management regimes. This makes interpretation of the results difficult in terms of meeting the
spatial restrictions (O'Hara 1989) . Because of this shortcoming, LP (by itself) has been largely abandoned for
scheduling with spatial constraints. MIP is similar to LP, but allows constraint of some of the variables so they may
only take on integer values. Using MIP with integer [0,1] variables for the management regime decision variables
overcomes LP's fractionalization problem. Unfortunately, MIP based harvest scheduling models with spatial
restrictions exhibit combinatorial explosion—as the number of stands increases, the computer time needed to find
the optimum solution grows exponentially. This reders MIP generally unsuitable for large scale problems
(Weintraub 1994; Yoshimoto 1994). Another problem with both LP and MIP is that it is difficult to formulate
problems in a way that allows adjacent stands to be grouped together into areas that can be scheduled as a single

1 David S. Mullen is Forest Resource Systems Specialist at Rayonier, Southeast Forest Resources, P. O. Box 728,
Fernandina Beach, Florida 32034. Ralph M. Butler, Ph.D., is Professor of Computer Science, University of North
Florida, 4567 St. Johns Bluff Rd. South, Jacksonville, Florida 32224.
2 The model presented in this paper, and two other models—a Monte-Carlo integer programming model and a
traditional genetic algorithm model—were developed for the Mullen's master's thesis (Mullen 1996)

2

opening. Attempts to do this for large scale problems would yield an astronomical number of constraints, far
beyond the capability of current MIP solvers (Jones 1991).

Stochastic Optimization Techniques

Because of the drawbacks of LP and MIP, modelers have turned to stochastic optimization techniques such as
Monte Carlo integer programming (MCIP), simulated annealing (SA), tabu search (TS), and genetic algorithms
(GA). Nelson, et al. (1988); O'Hara, et al. (1989), Dallain (1989); Jamnick and Walters (1991), and Mullen (1996)
all developed models that use MCIP. A problem with MCIP is that the work done to generate each solution is
completely discarded before starting on the next solution. SA, TS, and GA all overcome this problem to a degree
by implementing some way of remembering work done on previous solutions, and attempting to gradually improve
the best solution as model execution proceeds. Lockwood and Moore (1993), and Murray and Church (1994)
developed SA based models. Murray and Church (1994) and Misund et al. (1995) developed models that employ
TS. Mullen (1996) developed two models that use GA.

Random Ordering Heuristic

Yoshimoto et al. developed a stochastic optimization model that used a heuristic they termed Random Ordering
Heuristic Optimization (ROHO) (Yoshimoto et al. 1994). The basic idea of ROHO is to randomly create a
permutation of the stand numbers of the stands to be scheduled and pass the permutation to a scheduling algorithm
that uses it as a priority list by which to place stands into the harvest schedule. The first stand on the list is placed
first, the second is placed second, and so on. The model presented in this paper uses the ROHO concept. It
maintains a "population" of permutations; manipulates the permutations by applying genetic algorithm selection,
mutation and crossover operations; and feeds the permutations to an heuristic scheduling algorithm that evaluates
their fitness.

Genetic Algorithms

Genetic algorithms are optimization heuristics that are used to search for good solutions to complex problems.
They manipulate populations of strings of symbols. The strings of symbols are referred to as chromosomes. In some
genetic algorithms, problem solutions are represented directly on the chromosomes. In others, the chromosomes
must be transformed into the solution by the evaluation function. Genetic algorithms were developed by John
Holland in the early '70s. Since that time, a large amount of research activity and practical problem solving has
been conducted using genetic algorithms. This activity has applied genetic algorithms to a wide range of
optimization problems, developed many new approaches to their use, and further refined the theory of how and
why genetic algorithms work (Davis 1991; Beasley 1993a; Beasley 1993b).

Figure 1 gives an outline of a generalized genetic algorithm as given by Davis (Davis 1991). As a genetic
algorithm runs, the operations performed on the population of chromosomes guide it toward better and better
solutions to the problem. Figure 2 shows the evaluation results of running a particular genetic algorithm two times
for a given input. It shows the value of the best solution found so far at each iteration. As is typical of most genetic
algorithm results, Figure 2 shows a period of rapid solution improvement in the early generations, followed by
gradually decreasing improvements, followed by a plateau in which improvements are rare and relatively
insignificant. Since genetic algorithms are most often used for intractable problems, the user may never know how
close a given solution is to the true optimum. Further discussion of the background of genetic algorithms is beyond
the scope of this paper. The interested reader is referred to The Handbook of Genetic Algorithms by Davis (Davis
1991), which provides an excellent introduction to the topic. Also, a large volume of genetic algorithm information
and research literature is available on the Internet and can be located by searching for "genetic algorithms"

3

Step 1. Initialize a population of chromosomes.
Step 2. Evaluate each chromosome in the population.
Step 3. Create new chromosomes by mating current

chromosomes; apply mutation and
recombination as the parent chromosomes
mate.

Step 4. Delete members of the population to make
room for the new chromosomes.

Step 5. Evaluate the new chromosomes and insert
them into the population.

Step 6. If time is up, stop and return the best
chromosome; if not, go to Step 3.

43,200
43,250
43,300
43,350
43,400
43,450
43,500
43,550
43,600
43,650

100 1,000 10,000 100,000 1,000,000
Iteration No.

Run 1
Run 2

Figure 1.—General genetic algorithm Figure 2.—Typical genetic algorithm progress toward
optimum solution

MODEL DESIGN

The genetic algorithm based spatially constrained harvest scheduling model presented here will be referred to as
hsGAo. "hs" is for harvest scheduler, "GA" is for genetic algorithm, and "o" is added because the genetic algorithm
is an order-based implementation. To present the design of hsGAo, we will discuss the following topics: harvest
scheduling problem formulation, hsGAo model overview, chromosome representation, chromosome initialization,
genetic algorithm operators, and the evaluation function.

Harvest Scheduling Problem Formulation

The harvest scheduling problem for the hsGAo model is defined as follows. There are N stands to be scheduled.
The planning horizon is composed of a consecutive sequence of P L-year periods, numbered 1, 2, . . ., P. The total
planning horizon length is PL years. There are M=P+1 management regimes. Regimes 1 through P each have only
one harvest and it occurs in the period matching the regime number. Regime M is the "do-nothing" regime which
does not have a harvest in the planning horizon. Let E be the exclusion period or (green-up period) specified as a
number of planning horizon periods. For example, if the L = 4 and the green-up time is 10 years, then E =
CEILING(10/4) = 3. Let O be the maximum allowed opening size. Let ADJi be the adjacency list for stand i. Let Ai

be the land area of stand i. To prevent opening size violations, stands must be defined such that for every stand, Ai

≤ O. Let Vij be the volume available for harvest from stand i in period j if managed by regime j, j∈[1,P]. Let Dij be
the net present value (NPV) of stand i if scheduled by regime j, j∈[1,M]. Let Si be the regime assigned to stand i by
the scheduling process. Si∈[1,M]. Note that if Si ∈[1, P], then it also indicates the period of harvest. A harvest
schedule, then, is S = <S1, S2, . . . , SN>. Let S+

i be the unrestricted optimum regime number for stand i. That is, S+
i

= j' such that Dij' ≥Dij, ∀j∈[1,M]. Let Ri be the implied planning period number that stand i was most recently
harvested in the past. For a given stand, Ri = 1-x, where x is the number of periods prior to the first planning
horizon period that stand i was last cut. The Ri values are used to constrain harvest of stands adjacent to recently
harvested stands. Let VMAXj and VMINj be the maximum and minimum allowed harvest volume in schedule
period j. Let VSUMj be the sum of scheduled harvest volume in schedule period j, j∈[1,P]. Let Z be the value
penalty per unit of volume to be applied to period volume restriction violations. Let Gik be any group (set) of
adjacent stands, including stand i, that at some time during the planning horizon are considered a contiguous
opening. Let AGik be the total land area of the stands that form group Gik. Let T be the set of all Gik found for a
particular schedule. Let ZVMIN be the value penalty due to violations of period minimum volume restrictions.

4

 The spatially constrained harvest schedule optimization problem is specified by the following formulation:

Maximize:

(1) Q D Zis
i

N

i=










 −

=
∑

1

VMIN

subject to:

(2) S M i Ni ∈ ∀ ∈[,], [,]1 1

(3) ij
i S j

jV VMAX j P
i:

, [,]
=

∑ ≤ ∀ ∈ 1

(4) A O G TGik ik≤ ∀ ∈,

The objective function, Q, shown in equation (1) is simply the sum of the NPVs of the stands as scheduled minus a
penalty term for the minimum volume constraint violation. Constraint (2) forces the schedule regime, Si, to be a
valid regime number for each stand. Constraint (3) enforces the maximum volume restrictions. Constraint (4)
enforces the opening size (adjacency) constraints. The constraint states that openings over a maximum allowable
size (O) are never allowed to occur.

hsGAo Model Overview

Figure 3 is a high level data flow diagram for the hsGAo model. When the program starts, the initialization routine
reads the problem specification inputs and initializes memory objects that contain the GA options, harvest
scheduling options, harvest scheduling data, and the population of order-based chromosomes. After initialization,
processing control is passed to the GA driver routines which run the genetic algorithm. The GA driver routines
call the chromosome evaluation function each time a new chromosome is created. The evaluation function obtains
the chromosome to be evaluated; generates a harvest schedule subject to (2), (3), and (4); evaluates the harvest
schedule using (1); and passes the evaluation back to the GA driver. Each time the evaluation function finds a
harvest schedule that has a better value than all previous schedules, it outputs it to the schedule output file.

Start Scheduling
Options & Data

Order-based
Chromosomes

GA
Options

Stop

Internal

Data store

GA Driver
Routines

Chromosome
Evaluation
Function

Harvest
Schedules

Initialization
Problem

Specification
Inputs

Input/
Output

Process
Processing
sequence

Data
flow

Key:

Figure 3.—High level data flow diagram for the hsGAo model

5

Chromosome Representation

In the hsGAo model, each chromosome is a permutation of the list of stand numbers that are being scheduled. If
there are N stands being scheduled, then each chromosome would be a permutation of the integers from 1 to N. As
the GA runs, the selection, mutation, and crossover operations make gradual changes to the ordering of the
integers in the permutations on the chromosomes. Consider an unrealistically small example with N = 10, and
population size = 6. If we initialize the chromosomes with random permutations, they might appear as in Figure 4.

Chrom. Integer Position on Chromosome
No. 1 2 3 4 5 6 7 8 9 10
1 7 4 1 9 3 6 5 8 2 10
2 9 2 4 7 1 3 6 8 10 5
3 8 1 2 9 3 10 5 4 6 7
4 6 2 4 5 9 10 8 1 7 3
5 3 1 9 6 8 2 10 5 4 7
6 10 9 4 5 3 7 2 1 8 6

Figure 4.—Simple example of chromosome format for hsGAo harvest scheduling model

Chromosome Initialization

The hsGAo model has several options for chromosome initialization. These options are named random, first, and
best. As the name implies, random initialization generates a different random permutation on each chromosome in
the population. The first and best initialization options both initialize chromosomes by transforming old schedules
into permutations. The old schedules would have been generated by a prior execution of the model, or by another
harvest scheduling model. For the first initialization option, the permutation is arranged so that stands scheduled
in period one in the old schedule are placed at the beginning of the chromosome, stands scheduled in period two
are placed next, and so on. For the best initialization option, the permutation is arranged so that stands that are
scheduled by their optimum (best) period are placed at the beginning of the chromosome, stands that are scheduled
one period away from their optimum period are placed next, and so on.

Genetic Algorithm Operators

The hsGAo model allows the user to choose among several options for the genetic algorithm operators (selection,
crossover, mutation, fitness, and replacement). Selection operator options include proportional, SUS (stochastic
universal sampling), tournament, and probabilistic tournament. Crossover operator options include order-based,
position-based, and partially matched. Mutation operator options include order-based and position-based. Fitness
operator options include raw, normal, and ranking. Replacement operator options include Best, random without
replacement, and random with replacement. For the replacement operators, each option can be used with or
without duplicates allowed. Discussion of how all of these operators function is beyond the scope of this paper.
They are all well documented in the genetic algorithm literature (Goldberg 1989; Davis 1991).

6

The Evaluation Function3

The GA operators manipulate the permutations on the chromosomes. Each new chromosome that is created during
the GA run is fed to the evaluation function to see how good the chromosome is. The evaluation function uses the
permutation of stand numbers represented on the chromosome as a list giving the order by which to place stands
into the schedule.

Stands are placed into the schedule by one of four scheduling methods: first, best, smart-first, and best-
probabilistic. All four scheduling methods place stands into the schedule so that maximum volume restrictions and
adjacency constraints are not violated. The four methods differ in how they choose where in the schedule (which
regime/period) to place stands. They also differ in how they handle the minimum volume restrictions. The general
scheduling algorithm for all four methods is shown in Figure 5.

Si ← 0, ∀i
FOR i' = 1 TO N

i ← extract stand number from position i' on chromosome
Si ← regime chosen for stand i by the scheduling method

NEXT i'
Figure 5—General scheduling algorithm used in the order-based genetic algorithm evaluation function

The first scheduling method places each stand into the first (lowest numbered) planning horizon period without
violating (3) or (4). The best scheduling method places each stand into the planning horizon period that gives it its
highest (best) NPV available without violating (3) or (4). The smart-first scheduling method schedules stands in
period one until the minimum volume for the period is met, then moves to the second period, and so on. After the
minimum volume restrictions have been met for all periods, the smart-first method reverts to the best scheduling
method for the remaining stands. The best-probabilistic scheduling method is similar to the best method. It differs
in that when choosing the best period, it performs a biased selection from among the legal periods. The bias favors
the period with the highest NPV, but provides the chance that some sub-optimum period is selected for the stand.

The choice of which scheduling option is used for a particular run affects the choice of the chromosome
initialization option. The first initialization method is used with the first and smart-first scheduling options. The
best initialization method is used with the best and best-probabilistic scheduling options. The random
initialization option can be used with any scheduling method.

A pseudocode description of the evaluation function design for hsGAo is given in Figure 6 which spans the next
few pages. The pseudocode includes four modules named evaluate, place_stand, get_per, and
set_per_now_scheduling. Module evaluate is the top level module. It is called by the genetic algorithm driver
routine, and it calls place_stand and set_per_now_scheduling. Module place_stand calls get_per. A fifth module,
is_size_violation, which is called by place_stand, is not given here. is_size_violation tests to see if placing the
stand into the schedule in the period being tried will cause an opening size violation. Pseudocode for function
is_size_violation is given in (Mullen 1996) and (Mullen 1997).

3 This section is taken almost verbatim from Mullen (1996).

7

FUNCTION evaluate (c)

// Evaluation function for order-based genetic
// algorithm harvest scheduling model.
local data: Q, VSUM, i, i’, Zvmin

global data: sched_opt, per_now_filling, N, P, Z,
 S, V, D, VMIN

Q ← 0; Si ← 0, ∀i; VSUMj j j P← ∀ ∈0 1, : [,]

IF sched_opt = SMART_FIRST_SCH THEN
per_now_filling ← 1 // Start filling period 1.
CALL set_per_now_filling()

ENDIF

FOR i’ = 1 TO N // Place N stands into the schedule.
i ← c[i'] // get next stand number from chr.
Si ← place_stand(i)
Q ← Q + DiSi // Sum NPV and Volumes.
IF S Pi ≤ THEN VSUMSi ← VSUMSi + ViSi

// For SMART_FIRST_SCH option, adjust
// per_now_filling if needed.
IF sched_opt == SMART_FIRST_SCH THEN

CALL set_per_now_filling()
ENDIF

ENDFOR

// Deduct minimum volume restriction violation.

Zvmin ← Z VMIN VSUMj j

j

P

max(,)0
1

−

=
∑















Q ← Q - Zvmin

RETURN Q
END FUNCTION evaluate

FUNCTION place_stand(i)
// Find regime/period in which to schedule stand.
local variables: j, vol
global data: P, S, V, ADJ, VMAX, VSUM
// Get the first period to be tried.
j ← get_per(i, TRUE)
// Loop until scheduling stand i in period j doesn't
// violate restrictions or j is set beyond end of
// planning horizon.
DO WHILE j < P+1

// Test for volume restriction violation
vol ← VSUMj + Vij

IF vol ≤ VMAXj THEN
IF |ADJi| = 0 THEN RETURN j
Si ← j // Test for opening size violation
IF NOT is_size_violation(i) THEN

RETURN j
ENDIF

ENDIF

j ← get_per(i, FALSE) // Get next period to try.
ENDDO
RETURN (P+1) // Assign do-nothing regime.
END FUNCTION place_stand

Figure 6.—A pseudocode description of the evaluation function design for hsGAo (continued on next page)

8

FUNCTION get_per(i, init)
// get_per returns a period to try to schedule stand i.
local variables: j
global data: sched_opt, per_now_filling, P, S+, D, σ
DO CASE sched_opt

CASE FIRST_SCH // Schedule in first period
IF init THEN // that does not cause any

j ← 1 // violations.
ELSE

j ← j + 1
ENDIF

CASE BEST_SCH // Schedule in best period
IF init THEN // that does not cause any

j ← S+
i // violations. S+

i is opt-
ELSE // imum regime for stand i

IF all regimes already tried THEN
j ← P + 1

ELSE
j ← next best untried regime

ENDIF
ENDIF

CASE SMART_FIRST_SCH
// Try to schedule in per_now_filling on
// first try. On rest of tries, use next best
// untried regime. If VSUMj has reached
// MINVj for all j, then revert to BEST_SCH
// scheduling method.
IF init THEN

IF per_now_filling ≤ P THEN
// Try to schedule in
// per_now_filling on first try.
per ← per_now_filling

ELSE
// Use best regime for stand.
per ← S+

i

ENDIF
ELSE

j ← next best untried regime
ENDIF

CASE PROB_SCH
IF init THEN

// On first try for a stand, use probabi-
// listic regime selection. Set initial try
// to optimum period +/- random move.
j ← S+

i // optimum regime for stand i
j ← randomly choose period from

normal distribution with mean
of j and standard deviation of σ

IF j < 1 THEN j ← 1
IF j > 1 P + 1 THEN j ← P + 1

ELSE
// On rest of tries, choose next best
// untried period.
IF all regimes already tried THEN

j ← P + 1
ELSE

j ← next best untried regime
ENDIF

ENDIF
ENDCASE
RETURN j
END FUNCTION get_per

BEGIN PROGRAM set_per_now_filling()
// Set per_now_filling to the first period that has
// VSUMper_now_filling < VMINper_now_filling.
global data: P, VSUM, VMIN, per_now_filling
WHILE per_now_filling <= P + 1

IF VSUMper_now_filling < VMINper_now_fillingTHEN
RETURN

ENDIF
per_now_filling ← per_now_filling + 1

END WHILE
RETURN
END PROGRAM set_per_now_filling

Figure 6. (cont.)—A pseudocode description of the evaluation function design for hsGAo

MODEL IMPLEMENTATION AND TEST RESULTS

For his thesis, Mullen developed a C language implementation of the hsGAo model (Mullen 1996). His thesis
supplies the source code and user's guides for this model implementation plus two other models. The hsGAo
program uses a genetic algorithm library named PGAPack that is publicly available at several sites on the Internet
(Levine 1995). The PGAPack library provides the GA driver routines, routines to create and manipulate the

9

population of order-based chromosomes, and the selection, fitness, and replacement operators. It does not include
order-based mutation and crossover operators, so routines were developed by Mullen to implement these.

Also for his thesis, Mullen ran timed test runs to compare how well the hsGAo program did finding near-optimum
solutions compared to two other models. One of these models, hsGAt, used a traditional GA in which the solution
(S) was represented directly on the chromosomes. The other model, hsMCIP, used a Monte Carlo integer
programming technique based on the models presented by Nelson et al. (1988). In the timed test runs, performance
of the order-based GA model (hsGAo) averaged 2.20% higher than the traditional GA model (hsGAt) and 3.55%
better than the MCIP model (hsMCIP). The test runs were executed for six different harvest scheduling problem
data sets. The data sets ranged from 42 to 849 stands, 10 to 15 planning horizon periods, 0.95 to 4.77 adjacencies
per stand, and 2-period to 4-period period exclusion periods. A side question that was investigated in a series of
test runs was: “How close to being optimal are the hsGAo program solutions?” Results of test runs without
adjacency constraints showed that hsGAo could easily find solutions that were about 99.8% of the LP optimum
solutions for four of the six data sets, 99.7% for one data set, and 99.0% for one data set (Mullen 1996).

Mullen's employer, Rayonier, Southeast Forest Resources, has successfully used the hsGAo program to develop
operational harvest schedules for 90% of its timberland holdings in Florida and Georgia. For the fifteen forests that
were scheduled, the hsGAo program found spatially constrained harvest schedule solutions that had an average
NPV only 1.7% less than non-spatially constrained LP optimum solutions.

CONCLUSION

We have reviewed the design of a spatially constrained harvest schedule optimization model that uses a
combination of an order-based genetic algorithms and an heuristic scheduling algorithm as the optimization
techniques. Results from test runs and operational use show the hsGAo model to be a highly efficient model for
optimizing large scale spatially constrained timber harvest scheduling problems.

LITERATURE CITED

BEASLEY, DAVID, D.R. BULL, AND R.R. MARTIN. 1995a. An overview of genetic algorithms: Part 1, fundamentals.
University Computing 15(2) 58-69.

BEASLEY, DAVID, D.R. BULL, AND R.R. MARTIN. 1995b. An overview of genetic algorithms: Part 2, research
topics. University Computing 15(4) 170-181.

BIERWIRTH, CHRISTIAN. 1995. A generalized permutation approach to job shop scheduling with genetic
algorithms. Bremen, Germany: University of Bremen, Department of Economics.

BRODIE, J. DOUGLAS, AND JOHN SESSIONS. 1991. The evolution of analytic approaches to spatial harvest
scheduling. In: 1991 systems analysis in forest resources symposium: 1991 March 3-7. Society of
American Foresters, USDA Forest. Service.

DALLAIN, PATRICK. L. 1989. A block harvest scheduling model for spatial management planning. M.Sc. thesis,
University of New Brunswick, Fredericton, N.B.

DAVIS, LAWRENCE. 1991. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.

FANG, HSIAO-LAN. 1992. Investigating Genetic Algorithms for Scheduling. M.Sc. Dissertation. Edinburgh,
Scotland: University of Edinburgh, Department of Artificial Intelligence.

10

GOLDBERG, DAVID E. 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley
Publishing Co., Inc.

JAMNICK, MARK S., AND K. WALTERS. 1991. Harvest blocking, adjacency constraints, and timber harvest volumes.
In: Proceedings of the 1991 Systems Analysis in Forest Resources Symposium: 1991 March 3-7 (1991)
pp. 255-266., Charlston, SC,

JONES, J. GREG, BRUCE J. MENEGHIN, AND MALCOLM W. KIRBY. 1991. Formulating adjacency constraints in linear
optimization models for scheduling projects in tactical planning. Forest Science 37: 1283-1297.

LEVINE, DAVID. 1995. User' Guide to the PGAPack Parallel Genetic Algorithm Library. Argonne National
Laboratory, Argonne, IL.

LOCKWOOD, CAREY, AND T. MOORE. 1993. Harvest scheduling with spatial constraints: a simulated annealing
approach. Canadian Journal of Forest Research 23: 468-478.

MISUND, GUNNAR, B.S. JOHANSEN, AND G. HASLE. 1995. Integration of Geographical Information Technology and
Constraint Reasoning - A promising Approach to Forest Management. SINTEF Informatics, P. O. Box
124, Blindern, N-0314 Oslo, Norway.

MULLEN, DAVID S. 1996. A comparison of genetic algorithms and Monte Carlo integer programming for
optimization of adjacency constrained timber harvest scheduling problems. Master of science thesis.
Jacksonville, Florida: University of North Florida, Department of Computer and Information Sciences.

MULLEN, DAVID S. 1997. An optimal approach and algorithms for limiting forest opening size in adjacency
constrained timber harvest scheduling models. In: Symposium on Systems Analysis in Forest Resources,
1997 May 28-31, eds. J. Michael Vasievich, Jeremy Fried, and Larry Leefers. USDA Forest Service, North
Central Forest Experiment Station.

MURRAY, ALAN T., AND RICHARD L. CHURCH. 1994. Heuristic solution approaches to operational forest planning
problems. Spectrum August 1994.

O'HARA, ANTHONY J., B.H. FAALAND, AND B. B. HARE. 1989. Spatially constrained timber harvest scheduling.
Canadian Journal of Forest Research 19: 715-724.

NELSON, JOHN, J.D. BRODIE, AND J. SESSIONS. 1988. Integrating short-term spatially feasible harvest plans with
long-term harvest schedules using Monte Carlo integer programming and linear programming. In: The
1988 Symposium on Systems Analysis in Forest Resources, eds. B. Kent and L. Davis, 224-229. US Forest
Service Rocky Mountain Forest Range Experiment Station General Technical Report RM-161.

WEINTRAUB, ANDRES, FRANCISCO BARAHONA, AND RAFAEL EPSTEIN. 1994. A column generation algorithm for
solving general forest planning problems with adjacency constraints. Forest Science 40: 142-161.

YOSHIMOTO, ATSUSHI, J.D. BRODIE, AND J. SESSIONS. 1994. A new heuristic to solve spatially constrained long-
term harvest scheduling problems. Forest Science 40: 365-396.

