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ISSUES IN THE ESTIMATION OF DYNAMIC MICROECONOMIC MODELS OF FOREST USE

Bill Provencher1

____________________________________________________________________________________________

ABSTRACT. ––To date the literature on the microeconomics of forest management has had a normative focus:
what forest managers should do to maximize a particular objective function. This paper has a positive focus, with
particular emphasis on the estimation of dynamic structural models of forest use and their reduced form
counterparts.
____________________________________________________________________________________________

INTRODUCTION

In the analysis of dynamic decision problems, the vast majority of the literature has focused on the normative
aspects of such problems: what resource managers should do to maximize a particular objective function. So, for
instance, the Faustmann model and its many derivatives address the question of when a timber stand should be
harvested or thinned. There are two reasons for research on the normative questions of dynamic resource
management. The first is purely pedagogical: the matter of how to allocate resources over time is a difficult one,
and mathematical models of the decision process provide insights to the underlying economics. The second is
practical: resource managers and policymakers wish to know how a resource should be managed over time to
maximize a particular objective function, such as expected net revenues.

Rarely have resource economists employed their models in the pursuit of the positive question; that is, what
decision problem do resource managers actually solve? Usually in statistical inference concerning the actual
decisions of resource managers and users, dynamic models are treated rather allegorically, with the analyst turning
to them for inspiration––to determine, for instance, what variables to use in a linear regression––but never
estimating the models directly. The primary explanation for this shortcoming in the literature is that such
estimation is computationally very difficult. It usually requires a large amount of computer processing time, and
perhaps more importantly, it requires a substantial amount of difficult programming by the analyst. Nonetheless, in
the economics literature the estimation of dynamic decision processes has continued to grow rapidly. Most of this
literature has concerned dynamic decisions that are dichotomous. Examples related to agricultural and resource
economics include the timber harvest decision (Provencher 1995a; 1995b); the decision to take a recreational
fishing trip (Provencher and Bishop 1997); and the decision to cull a cow from a dairy herd (Miranda and
Schnitkey 1995).

This paper is motivated by the perspective that in the near term the greatest potential for economics to contribute to
an understanding of applied dynamic resource management will be positive rather than normative. Over the past
twenty years economics has made a substantial contribution to the theory of dynamic resource management; its
pedagogical contribution will remain substantial. But its normative contribution to applied dynamic resources
management has been and will continue to be minor, for the simple reason that the “curse of dimensionality”
prevents the development of decision models that fully reflect the complexity of the social, biological, and physical
processes characterizing the decision environment.2 Without such complexity, resource managers are likely to
dismiss the models as irrelevant academic exercises. In dynamic analysis, models with six to eight state variables
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––the number of executable statements necessary to solve a problem––increases exponentially with the
dimensionality of the problem. In dynamic programming, references to the curse usually concern the dimension
of the state space, though it applies to the dimensionality of the decision space as well.
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are computationally very large; yet in my experience resource managers judge such models to be wholly inadequate
as decision-making tools.

As discussed below, the curse of dimensionality is even more of an issue in the estimation of dynamic decision
problems than in the normative solution of such problems, suggesting that if anything, to be computationally
tractable a model used in estimation of a dynamic decision problem must be simpler than its normative counterpart.
Yet the very feature of normative dynamic analyses that leaves them unattractive to resource managers is their
simplicity. How then to reconcile the need for tractable models to the contention that economics has much to
contribute to the positive analysis of dynamic resource management? The answer is forthcoming from almost any
good econometric analysis of behavior. Show such an analysis to the “agent” represented by the model––a
consumer, producer, or bureaucrat––and the agent would surely argue against the simplicity of the model. Yet
economists continue to use these models, supposedly because they do reasonably well in predicting behavior.
Indeed, it appears that the literature on the economics of dynamic resource use is unusual if not unique in its
normative emphasis. So the justification for using relatively simple dynamic models to explain the behavior of
resource users is that such models do a reasonably good job of capturing the underlying decision process; though
resource users and managers may claim that a large variety of factors affect their decisions, the analyst develops a
representative model in which the decision process is conditioned by a few key variables. A multitude of other
factors may influence the agent’s decision, but from the perspective of the analyst these other factors are the
unobserved elements of a stochastic process.

In the discussion below I illustrate the essential features of structural estimation of dynamic decision problems by
examining a simple model of timber harvesting. I then discuss reduced form estimation of the associated decision
rule, and briefly examine the relative merits of structural and reduced form estimation.

STRUCTURAL ESTIMATION OF A DYNAMIC DECISION PROBLEM

To keep the presentation manageable, I focus on the matter of estimating an optimal stopping problem, in which
the decision-maker merely chooses whether or not to let an activity continue. Let i=0 denote the decision to
continue the activity, and let i=1 denote the decision to stop. The amount of the payoff in a period depends on the

state variables x , which evolve over time according to the probability density function ( )tt xx |f 1+ , the decision-

specific random shock ε i , and perhaps other variables, denoted by the vector y, that are invariant over time. The
random shocks are contemporaneously observed by the decision-maker but never observed by anyone else; in
particular, they are not observed by the analyst. For simplicity we assume these shocks are additive, and identically

and independently distributed over time. Letting ( ) i
tt ε+yx ,R i  denote the decision-specific payoff at time t, the

relevant decision problem can be stated,

 (1) ( ) ( ) ( ){ } ( ){ }11
1

00 ,,,,Rmax, tttttt RVEV εθε +++= + yxyxyxyx ,

whereθ  is a discount factor.

The problem in (1) reflects Bellman’s principal of optimality; in particular, the expected value of not stopping the
activity in period t implicitly recognizes that optimal decisions are made in the future. This problem can be solved

via the recursive methods of dynamic programming. The solution is an optimal decision rule ( )Γ;,, tti εyx ,

where ε t  denotes the difference ε εt t
1 0− , and Γ  is the set of structural parameters associated with the decision

problem.

This basic problem can be adapted to the timber harvest decision on even-aged timber stands held in nonindustrial
private forests (NIPFs) ––those forests held by landowners not directly involved in the manufacture of forest
products. The issue of timber harvests on NIPFs has received a considerable amount of attention in the forest
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economics literature because nationally these forests comprise about 75% of commercial timberland, and there is
concern among forestry professionals that these forests are not well managed.

Formally, let st denote the age of the timber stand at time t, and let ( )tsu  denote a money measure of periodic

utility from the standing forest. Following the previous literature, the utility received by NIPF owners from the

standing forest depends on the age of the timber stand. Also, let pt and ( )tsv  denote the price and volume of

timber, and let λ  denote the market value of bare forestland ––it is the salvage value associated with the decision
to harvest the timber stand. It follows that here xt is comprised of the state variables pt and st, and
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Now suppose there exists observations over time t=1,…T, and across individuals (or firms) j=1,…J, of decisions ijt
and variables xjt and yj.   The probability of harvest by individual  j at time t is defined by

 (2)     
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where ( ) ( ){ } ( )jjtjtjjjt RVEA yxyxyx ,,,R 1
1,

0 −+= +θ , and ( )εσε |g  is the probability density function

of ε .  Let Γ  denote the vector of structural parameters, which includes the discount rate, parameters of the payoff

functions ( )⋅iR , parameters of the distribution function ( )⋅f , and the distribution parameters σ ε . Formally, the

likelihood function is

(3)
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Note that estimation of Γ  is a complicated and computationally intensive exercise, much more so than is found
with typical static models. The search for the parameter vector that maximizes the likelihood function involves
solving the decision problem (1) each time new parameter values are evaluated in the search; this is apparent by the

presence of ( ){ }jtjVE yx ,1, +  in the limit of integration in (2). Maximum likelihood estimation thus involves the

nesting of an “inner” dynamic programming algorithm within an “outer” hill-climbing algorithm (Rust 1994).

THE REDUCED FORM ALTERNATIVE

Given the difficulty of estimating an appropriate structural model, it would appear reasonable to turn instead to

estimation of the dynamic decision rule, ( )Γ;,, tti εyx . Probit and logit regression can be rationalized as attempts

to do this. One might suppose, for instance, that the decision rule is characterized by a latent variable i jt
*  , the

value of which is linear in the original variables:
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(4) i jt jt j jt
* = + +β β εx yx y ,

where β x  and β y  are conformable vectors of parameters.  The decision i jt  relates to the latent variable i jt
*  as

follows:

(5)
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and so letting ( )εσε |g  denote the probability distribution function of ε , where σ ε  is a set of parameters

defining the distribution, the probability of observing termination of the activity by individual j at time t is given by

(6)
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where jjtA yx yx ββ −−= .  Now define ( )εσββ ,, yx=Γ r , and let ( )r
jjtjti Γ,,|Pr yx  denote the

probability of observed decision ijt. Then if the random shock is independently and identically distributed over time
and across individuals, the associated likelihood function is simply

(7)
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REDUCED FORM VS. STRUCTURAL ESTIMATION

Several observations about reduced form estimation are relevant to evaluating its merit. If the analyst is only
interested in identifying the decision rule associated with a particular dynamic decision problem, and in particular,
wishes to determine what factors affect the dynamic decisions of resource users and managers, then reduced form
estimation is certainly an appropriate tool. Moreover, by casting the estimation as the attempt to recover the
underlying decision rule of a dynamic decision problem, the analyst establishes grounds for including higher-order
terms in the estimation. Indeed, in the case of the simple optimal stopping problem described above, higher-order
terms are necessary to avoid misspecification bias. A comparison of the first lines of (2) and (6) reveals that if the
structural model is the “true” decision model, then the latent variable in the reduced form model implicitly denotes
the expected net gain from stopping the activity, where the expectation is taken over the future value of the activity.
It follows that a reduced form model in which the latent variable is linear in the original variables is appropriate
only if the expected net gain from stopping the activity is itself linear in the original variables. Formally, we
require

(8) ( ) ( ) ( ){ }[ ]jtjjjtjjtjjt VERA yxyxyxyx yx ,,R, 1,
01

++−≡−≡+ θββ   ,

where A is the limit of integration in (2) and (6).  For our simple model of NIPF owner behavior, (8) can be
restated

(9) ( ) ( ){ }11,210 ,v ++−+≡−≡++ ttjtttjt psVEspAps θλβββ  ,
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which states that the expected net gain from harvesting is linear in timber price and stand age. Generally this is not
true. Consider, for instance, the case where the price expectations of NIPF owners take the naïve form examined by
Brazee and Mendelsohn (1988); in particular, NIPF owners suppose that observed prices are random fluctuations

around a fixed mean price. In this case ( ){ }11, , ++ ttj psVE  is not a function of the current price pt, and so clearly

(9) cannot hold so long as the volume function v(st) is anything but a constant. Standard probit estimation omits a

relevant dependent variable (total revenue, ( )tt sp v ), and includes an irrelevant dependent variable (pt). Still

another problem is the implicit attempt to represent the discounted expected value function ( ){ }1, +tjsVEθ   as a

linear function of  sjt.  In summary, the structural model is implicitly associated with a decision rule ( )Γ;,, tti εyx
which, as indicated by the discussion above, one would expect can be well-approximated in reduced form
estimation.

Still, there would appear to be some merit to stating the structural model representing the underlying decision
process, even if the reduced form model is the one eventually estimated, as this could provide some insight to the
appropriate estimation procedure, and to the structure of the decision rule (that is, the structure of the reduced form
model). Consider, for instance, the case where the analyst draws NIPF harvest data from two regions distinguished
by timber prices, such as the coastal plain and piedmont of North Carolina. In reduced form estimation of the
harvest decision rule we might expect explanatory (state) variables to include timber price and some measure of the
state of the forest stand, such as stand age or volume per acre. In the absence of an explicit linkage between the
structural and reduced form models, the analyst is tempted to estimate a single reduced form model, combining the
data from both regions. But this would be a mistake. The decision problems solved by timber managers in the two
regions are different; what the analyst recovers from estimation are coefficients that reflect the “true” reduced form
coefficients of neither region.  Consider, for instance, simulation results from a timber harvest model similar to
that presented by Haight and Holmes. Simulations were run for 150 timber stands from each of two regions
distinguished by the stochastic process governing timber prices. In region 1 prices fluctuated randomly around a
mean price of $75/mbf, with a standard deviation of $6.25/mbf, and in region 2 prices fluctuated randomly around
a mean price of $150/mbf, with a standard deviation of $12.50/mbf. For such a model, the optimal harvest decision
rule is characterized by a reservation price strategy in which a stand of age s is harvested only if the observed price
is greater than the reservation price, p s* ( )  (see Brazee and Mendelsohn 1988). It follows that in each region,

price has a positive effect on the decision to harvest. Yet if harvest data are combined in a single probit or logit
regression, the positive sign on price will be substantially “diluted,” because in region 1 (the low price region),
harvests are observed at prices for which the optimal decision in the high price region is to not harvest. Indeed,
when each region is treated separately in a regression using observations generated by Monte Carlo simulation of
300 timber stands, the sign on price is positive and significant, as expected. On the other hand, when the regions
are combined in a single regression using observations generated via Monte Carlo simulation of 300 timber stands
(150 from each region), the sign on price is negative and nonsignificant. In repeated trials the coefficient on price
in the single regression is in the neighborhood of -0.0007, and the t-statistic is in the neighborhood of -0.8. The
upshot is that reduced form estimation requires that the analyst fully differentiate among the dynamic decision
problems solved by different agents. Explicitly modeling the underlying structural model can serve to clarify such
estimation issues.

Suppose instead that the analyst is indeed interested in the structure of the decision process. For instance, with
reference to our model of timber harvesting on NIPF’s, the analyst wishes to know something about the price
expectations held by NIPF owners. It is clear that reduced form estimation would not be adequate to address this
question; estimation of the decision rule provides no insights to the underlying structure of the decision problem,
and so its value as a policy tool is somewhat limited. For instance, in the case at hand the analyst would be unable
to determine whether the price expectations of forest owners are rational, adaptive, or something else altogether,
and so the reduced form model would provide no insight to the response of forest owners to changes in tax policy.
Or consider the issue considered by MacNair et al., the implicit price of the nontimber goods and services produced
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on national forests.3  The simple timber harvesting model presented above can be modified to consider the more
complicated timber management decision supposedly made on national forests. For instance, if we once again
assume that the only timber management decision is the harvest decision (here we make this assumption only for

the sake of exposition), then the utility functions ( )tsu  can be modified to include additional relevant state

variables, such as the distance to various aesthetic features such as lakes and streams, and a parametric version of

( )tjt y,u x  is then estimable upon structural estimation of the model using stand-level data. To reduce the

complexity of the problem, those parameters identifiable from a simple revenue maximization model can be
estimated separately using alternative data. Such parameters would include parameters associated with timber
growth functions and timber price expectations. The possible sources of alternative data used to estimate this subset
of parameters are several. One is the timber management models used by the Forest Service or other forestry
professionals. Another is the professional judgments of consulting foresters. A third source is the timber
management behavior of timber firms. The main point is that the complexity of the problem can be reduced

significantly by recursive estimation of parameters. In any event, the estimated payoff function ( )tjt y,u x  is the

value placed by the Forest Service on nontimber goods and services. Such values are simply not forthcoming from
reduced form estimation of the decision rule used by the Forest Service in the harvest decision.

SUMMARY

To date, economic analyses of dynamic resource management problems has been largely normative, though the
returns to such analyses appear to be small. This paper suggests that estimating even relatively simple models of
dynamic decision problems can yield substantial insights to the forest management behavior of NIPF owners,
timber firms, and government. The main obstacle to structural estimation of stochastic dynamic models is the
computational complexity of such models. The dynamic decision problems resource managers and resource users
should solve are typically understood to be quite complex, involving a large number of state variables. Direct
estimation of such problems generally would require a large amount of high quality data, and access to a
supercomputer. Yet it seems plausible that ultimately, normative considerations aside, resource managers are often
guided by relatively simple rules-of-thumb which can be represented by fairly simple, albeit perhaps noisy,
dynamic decision models. Reduced form estimation, which is best understood to be an attempt to estimate the
decision rule emanating from a decision process, can serve as a diagnostic tool for identifying those state variables
which are most important in the formulation of a structural model, but itself provides few insights relevant to
public policy.
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