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LINEAR APPROACHES TO SPATIAL OPTIMIZATION

John Hof and Michael Bevers1

ABSTRACT.—This paper documents formulations for four different spatial optimization problems that use linear
(continuous-variable) programming. For more discussion on these problems, the models, and case study results, the
reader is referred to our forthcoming papers: Bevers et al (1997), Hof et al. (in preparation), Hof (in review), and Hof
and Raphael (in press).

THE BLACK-FOOTED FERRET

Early in 1987 the black-footed ferret (Mustela nigripes) became one of the world's most endangered mammals when
the last known free-ranging member of the species was taken into captivity. The Wyoming Game and Fish
Department was successful in breeding six of the surviving ferrets, setting the stage for a national recovery program
of releasing captive-bred ferrets back into the wild. The first release of captive-bred black-footed ferrets occurred in
1991 in Shirley Basin, Wyoming. Two additional reintroduction areas were added in 1994, including the site of our
study, the federally managed lands of the Buffalo Gap National Grassland adjacent to the Badlands National Park.

Available evidence strongly supports the conclusion that black-footed ferrets have narrow habitat requirements,
living principally in prairie dog burrows and depending primarily on prairie dogs for prey (Linder et al., 1972). The
spatial arrangement of prairie dog colonies in a colony complex has important effects on the number of black-footed
ferrets that can be supported (Minta and Clark 1989). As prairie dog colonies become smaller or more widely
separated, successful ferret dispersal between colonies is less likely and the total population that can be supported is
reduced.

Within the reintroduction area, black-footed ferret habitat comprises a complex of active and potential prairie dog
colonies (patches) forming distinct habitat "islands" on the landscape. The approach described here is related to
earlier biodiffusion models (Skellam 1951, Kierstead and Slobodkin 1953, Okubo 1980), and island biogeography
models (Allen 1987). Our spatial optimization model uses discrete time periods and approximates habitat patch
configurations with a grid of cells on the landscape. We then incorporate cellular habitat management decision
variables so that all potential spatial configurations can be considered (within the resolution of our grid). Ferret
population growth and dispersal between cells from year to year is modeled here with an exponential population
growth potential and a random dispersal pattern that relates probability of dispersal to distance. With discrete spatial
cells and time periods, this reaction-diffusion process can be captured with linear constraints, as described below.

Particular ferret habitat layouts are achieved over time by the prairie dog populations that result from rodenticide
treatment-nontreatment schedules applied to each cell across the landscape, on the premise that prairie dog
populations will recover rapidly in areas left untreated. Decision variables (Xihk) are defined for each possible
schedule (indexed by k) of annual rodenticide treatment or nontreatment in each habitat condition class (indexed by
h) for each cell (indexed by i). For example, one schedule could call for rodenticide treatments in the first year and
every fourth year thereafter, while another schedule might call for treatments to begin in the second year instead.
Adult black-footed ferret populations expected in each cell in any year are limited by either the carrying capacity of
that cell, or by the ability of ferrets from nearby cells to successfully reproduce and disperse there, or both.
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Additional decision variables (Rit) are used to determine the timing (year t) and location (cell i) for captive-bred
ferret releases into the area. Our spatial optimization model is:
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Where:

t indexes annual time periods (0,...,T) that begin in late spring when the young emerge from the den
i,j index habitat management cells in the study area
h indexes initial habitat condition classes in each cell
k indexes rodenticide treatment schedules
p indexes policy constraints (if any) on selection of habitat management variables
Xihk = amount of area (in hectares) in cell i and initial habitat condition class h allocated to the kth multi-

year habitat management schedule
Rit = number of captive-bred ferrets released in cell i during year t that are expected to survive adaptation

to life in the wild
Sit = expected adult ferret population (including yearlings) in cell i at the beginning of year t, plus Rit

Ft = expected adult ferret population for the entire complex in year t
Ni = actual or estimated initial number of adult ferrets in cell I
gji = proportion of surviving adult and juvenile ferrets from den areas in cell j in year t-1 expected to

disperse and become adult ferrets in cell i at the beginning of year t
rj = an "r-value" for ferrets in cell j reflecting the maximum expected annual net population growth rate

(i.e., when habitat is not a limiting factor)
bt = an upper bound on the total number of captive-bred ferrets released during year t expected to survive

adaptation to life in the wild
cihkt = expected adult black-footed ferret carrying capacity for cell i and condition class h in year t per

hectare allocated to Xihk

mi = number of initial habitat condition classes in cell I
nih = number of habitat management schedules being considered for initial habitat condition class h in cell

I
Aih = total prairie dog colony area (in hectares) of initial habitat condition class h in cell I
cihktp = cihkt if Xihk contributes to policy constraint p in time period t, and zero otherwise
Cpt = amount of total expected black-footed ferret carrying capacity allowed in time period t under policy

p from the relevant subset of Xihk habitat management variables.
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Equations (1) - (5) define a discrete-time reaction-diffusion system (in this case, population growth and dispersal)
for evaluating population persistence within a habitat complex. Equation (1) maximizes total expected adult black-
footed ferret population for all time periods, each summed by equation (2). Equation (3) sets initial population
conditions. Equation (4) limits the expected adult ferret population in any cell for any year to (at most) the number
of captive-bred ferrets released into the cell plus the number of ferrets expected to disperse into the cell from all
cells in the complex (including the same cell), after accounting for net reproduction during the previous year.
Equation (5) limits the number of ferrets that can be released during any given year.

Our model assumes that organisms relocating into unsuitable regions will perish. This mechanism provides a
probabilistic basis for the expectation that, after accounting for births and deaths due to all causes in an abundant
habitat setting through the r-value (net annual population growth rate rj), additional mortality will occur in
proportion to the usage of inhospitable surroundings. Equations (6) and (7) account for these habitat dynamics by
imposing black-footed ferret carrying capacity constraints in each cell as a function of the selected habitat
management (rodenticide treatment) schedules. The expected ferret population in any cell in a given year (Sit) is
determined by either equation (4) or (6), whichever is limiting. We employed equation (8) to limit the total amount
of ferret habitat in the National Grassland in order to examine spatially and temporally efficient tradeoffs between
expected adult ferret populations and levels of prairie dog population control. The linear dispersal model (equation
4) is based upon an assumption of purely random diffusion, which is a first-level approximation for highly
developed species like the black-footed ferret. In general, biased diffusion enhances the persistence of populations
(Allen 1983). Thus, our model provides an estimated lower bound on the size of the expected population. Note that
we have identified the rj growth rates by cell. In some cases, expected net reproduction may be different from one
cell to another even with abundant habitat. For example, one cell may lie closer to terrain frequented by predators
than another cell.

BLACK-TAILED PRAIRIE DOGS

Once regarded as nothing but pests, the ecological importance of the prairie dog (Cynomys sp.) is now more
completely understood (Hoogland, 1995; Cincotta et al., 1988). To allow for analysis of black-tailed prairie dog (C.
ludovicianus) recovery strategies, we are working with the Nebraska National Forest to build a model for the Conata
basin area of South Dakota. The formulations presented here reflect our current thinking and will be tested further in
this case study. We will identify patches of potential black-tailed prairie dog (simply “prairie dog” hereafter) habitat,
based on historic maps of prairie dog presence during a time of high populations. These irregular patches are
contrasted with the cellular grid utilized in the previous section. Those patches will be assumed to be the only part of
the landscape that can support prairie dog populations, and thus they will limit our choice variables. The choice
variables will determine the area within each patch of potential habitat that is zoned for prairie dog habitat. It is
assumed that grazing regimes will be applied in the areas zoned for habitat that are conducive to prairie dog
presence, and poisoning will be eliminated. Areas in the patches of potential habitat that are not zoned for prairie
dogs will be assumed to be subject to poisoning and other management actions that make them unsuitable for prairie
dog occupation.

In order to model the prairie dog, we must make some specific assumptions about its population dynamics. First, we
assume that at any point in time, prairie dog populations in any colony are determined by whichever is limiting:
population growth and dispersal processes or the habitat carrying capacity determined by our choice variables.
Second, we will assume that, if unconstrained by habitat, prairie dog populations grow exponentially with an “r-
value” that indicates a growth rate net of natality and mortality.

Third, the only prairie dog movements that we will model are those that result in net dispersal between habitat
patches. This means that intra-patch movements and animal “exchanges” between patches for breeding purposes
(which roughly balance out) will be ignored. Hoogland (1995, pp.87-88) states “Emigration to, and colonization of,
new colony sites probably is expensive and dangerous for prairie dogs...However, expansion of already existing
colonies should be easier and safer.” Also, Cincotta et al. (1988, p.31) state that “Results indicated that prairie
directly adjacent to the study colony was likely to be colonized if it was near a dense population of prairie
dogs...High population densities may force prairie dogs to expand into new territory.” Prairie dogs probably begin to
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disperse to other areas before their colonies become completely saturated, but as a conservative modeling approach,
we will assume that no dispersal emigration occurs until habitat areas are at carrying capacity, determined with a
fixed parameter (per unit of habitat).

Fourth, we will assume that once dispersal occurs, it is random. Thus, we will identify a probability for each pair of
patches that a dispersing prairie dog from the first patch will successfully disperse to the other patch. This
probability can reflect barriers to dispersal (and other landscape features), but will primarily be a function of the
distance between the two patches (Garrett and Franklin, 1981). Our model will be structured so that dispersal
between all patches of potential habitat will be determined simultaneously. Implicit in this simultaneous solution
will be a feature that if prairie dogs attempt to enter a habitat area that is already full, those animals will then return
to the pool of dispersers and will again be subjected to the probabilities of successful dispersal to the other patches.

Fifth, we will assume that dispersing prairie dogs will not reproduce during their first year in the new colony. As
Cincotta, et al. (1987, p.341) state: “There was no observed reproductive success during either 1982 or 1983 among
the newly established populations of prairie dogs on the treated site. This suggests that female black-tailed prairie
dogs disperse after the mating season and do not bear young during their first year in a newly established territory.”

The combination of highly population-dependent random dispersal and zero reproduction during the first year in a
new territory, creates a model of spatial prairie dog recovery that can be contrasted with the population dynamics
assumed for the black-footed ferret in the first section.

Our model is formulated as follows:
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Where:

i indexes patches, as does j
M = the number of patches
t indexes time periods
T = the number of time periods.
Sit = the prairie dog population in patch i, time period t
Xi = the number of acres in patch i zoned as prairie dog habitat
Qit = a variable used to account for the prairie dogs that leave patch i in time period t to

disperse to other patches.
Ai = the number of acres in patch i. Patches are defined as areas of potential prairie dog

habitat.
Ni = the initial population of prairie dogs in patch i.
r = the “r-value” for resident prairie dogs.
gij = the probability of a dispersing prairie dog successfully leaving patch j and inhabiting

patch i.
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Cit = the density, or carrying capacity, of prairie dogs, per acre of habitat.
B = a limit on the total amount of area zoned for prairie dog habitat (policy parameter).

Equation (9) is the objective function, and maximizes the total prairie dog population over all patches and time
periods. Equation (10) limits the zoned habitat to the potential habitat in each patch. Equation (11) limits the
population in the first time period to the initial population. Equation (12) initializes the number of dispersing prairie
dogs to zero. The population in each patch and time period, Sit, is determined by whichever of constraints (13) or
(14) (or (11) for the first time period) is binding. Equation (14) simply limits the prairie dog population to the habitat
carrying capacity determined by the solution values for Xi. Equation set (13) determines the population of each
patch i in time period t, if it is binding, as follows: The population from the previous time period for patch i, Si(t-1) is
expanded by a factor of (1+r). In order to account for the dispersing prairie dogs not reproducing during their first
year in a new colony,

Qrg 1)j(t-ij
1j_

 ∑

is deducted from (1+r)Si(t-1).

Then, the prairie dogs successfully immigrating from other patches (j≠i),

Qg jtij
j_i

 ∑

are added. If, for a given i, Equation (14) is binding, then the excess population in (13) is accounted for in the Qi

variable, which simultaneously enters into the other equations in (13) as dispersing prairie dogs. The model solution

will always set Qit = 0 until Equation (14) is binding because the sum of the Sit is being maximized and gij
j_i
∑  is

always less than one. Thus, no dispersal occurs until allocated habitat (Xi) is full, as desired. Equation

set (13) is a simultaneous system of equations which will solve for all Qit and Qjt -- simultaneously accounting for all
dispersal between all patches in the given time period. Equation (15) limits the total of the Xi across all patches, as a
policy constraint.

EXOTIC PEST CONTROL

Recent literature documents the important and expanding problem of exotic pests invading forest ecosystems. As
Haack and Byler (1993) summarize, “most native insects and pathogens reach a dynamic state of equilibrium with
their hosts and natural enemies. However, this situation may not be true for ... newly introduced exotic insects and
pathogens.” These authors also state “Exotic insects and pathogens have dramatically altered forest ecosystem
diversity, function, and productivity. More than 20 exotic fungal pathogens and 360 exotic insects now attack woody
trees and shrubs in North America ...” This section will investigate the possibility of using optimization methods to
assist in developing a spatial management strategy for an invading pest once it has arrived and has at least minimally
established itself.

In order to construct a solvable optimization formulation, we use discrete time periods and discrete units of space as
in the ferret model -- square cells located in a north-south coordinate system. Liebhold et al. (1995) (originally
Skellam, 1951) suggest “Fick’s law of diffusion” to model the dispersal of an invading organism. An exponential
population growth model is then combined with Fick’s model in Liebhold et al. In order to apply this approach with
discrete time periods and cells, we treated each time period as a “time of release” and each cell as a “point of
release.” Any diffusion model (such as Fick’s) can then be used to predict the dispersal into other cells during the
length of one time period. We can thus calculate a matrix of coefficients, gnh , that indicate the proportion of

population that disperses from each cell, indexed with n, to each other cell, indexed with h, during one time period
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(and using cell centroids to calculate distances). The diagonal of this coefficient matrix, where n = h, indicates the
proportion of the population that remains in each cell during each time period. With those coefficients calculated, we
can then model the population in each cell h in each time period as:

[16] h  T1,...,=t       ]S )r+(1[ g  = S 1)n(t-nnh
n

ht ∀∑
n                           N = S nno ∀

Where:

h and n both index cells

t indexes time periods (t=0 for initial conditions)

rn  = the r-value for cell n

Sht  = the pest population in cell h in time period t

S 1)(t- n  = the pest population in cell n in time period t-1

Nn  = the initial pest population in cell n

This combines an exponential growth function with the diffusion coefficients for discrete time periods and discrete
space units (cells) in a linear, convex formulation. The gnh  coefficients in (16) can be varied to reflect spatial

variation across the landscape but must be assumed constant over time (more precisely, across all time periods). This
means that no limits to host capacity are included in (16); just as they are not included in Liebhold et al., 1995. If it
is possible to reduce pest population through spatially-specific management actions, then (16) could be augmented
as:

[17]
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where:

Yht = the amount of management effort in cell h and time period t

α h = the pest population exterminated per unit of Yht  in cell h

Any number of economic or biological objective functions could be utilized, but for simplicity let us assume that we
wish to minimize the total exotic pest population over T time periods. Let us also assume that our management
resource limitation can be captured by a simple constraint that specifies that we are only able to apply Kt units of
management in each time period t. The problem, then, is to optimally locate the management-induced pest mortality
over time, given the initial pest infestation location and subsequent growth and dispersal (as it is affected by the
management actions).

The basic optimization model is then:

Minimize:
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Equation (20) is written as an inequality in the model, because that aided in avoiding numerical problems in model
solution.

This model assumes that management ( Yht ) can be meaningfully related to the exterminated pest population. In

situations where management options must be related to host elimination (e.g., sanitation cutting of a host tree
species), the reader is referred to the approaches in Hof et al. (1997). The host-based problem appears to require
integer programming approaches, which severely limits model size and therefore spatial resolution. If management
effort can be directly related to pest mortality, but with diminishing returns, this can be included in the optimization
model above through piece-wise approximation.

THE NORTHERN SPOTTED OWL

For more than a decade, conservation of the northern spotted owl (Strix occidentalis caurina), hereafter referred to
simply as “the owl,” has been a central issue in management of forests in the Pacific Northwest. We used a
simulation model to construct an optimization model with a simplified formulation of the spatial biological
processes and relationships that allows linear optimization. We then used the simulation model to “check” the
conclusions drawn from optimization--thus recapturing the biological detail and reliability that might be
compromised in the simplified optimization formulation. Following Holthausen et al. (1995), we divided the
Olympic Peninsula into hexagonal 1500-ha cells, the size of which represents a core area or territory for an owl pair.
This yielded a model with 1681 cells (41 x 41), with the carrying capacity set at zero for any cell that does not
currently contain any habitat. To simulate the spotted owl population, we used OWL (version 2.01, described by
McKelvey et al. 1992).

The basic variables in this problem are the amount of habitat in each cell that is retained (or protected). Because
habitat for the northern spotted owl is low-elevation late-successional and old-growth forest, which take hundreds of
years to develop, the decision to retain habitat in any cell or not is semi-permanent. Thus, we used a static
optimization model to try to take advantage of this simplifying characteristic. This implies that the dynamic
processes of birth, dispersal, and death modeled in the simulation model had to be captured in an equilibrium sense
with static relationships in the optimization model.

The dynamics of owl population growth and dispersal captured in the simulation model are complex, but we assume
that at any point in time, the population in any cell is limited by either the amount of habitat, the connectivity to
other cells’ owl populations, or both. A simple characterization of connectivity would be that each cell’s population
is potentially limited by the population in the cells immediately surrounding it. For each cell i, we will then define
the set of immediately-surrounding cells as set Ωi. This simple relationship is analogous to a first-order spatial
autocorrelation; and, because each cell in each Ωi is affected by its surrounding cells, this relationship implies a
cascading effect beyond the Ωi set for each cell i. The combination of potentially limiting factors could then be
formulated as:
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Where:

i indexes the cells.

pi = the population in the ith cell.

Ωi = the set of cell indexes that surround cell i.

Ci = the proportion of cell i that is retained as habitat.

p k
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 = the total population in all of the cells in set Ωi

f and g = empirical functions

The f and g functions do not describe dynamic processes, but are, instead, static, deterministic relationships estimated
from empirical or simulated observations. The f and g functions would, in general, be nonlinear, but can be
approximated in a linear optimization model, so long as they exhibit diminishing returns. We thus formulate a model to
maximize owl population as:
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Where:

j indexes the J segments that approximate f

h indexes the H segments that approximate g
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aj = a coefficient that approximates the f function for the jth segment of p k
k i

∑
Ωε

bh = a coefficient that approximates the g function for the hth segment of Ci.

Xij = the jth segment of p k
k i

∑
Ωε

Yih = the hth segment of Ci

Sj = the segment size limit of Xij

Qh = the segment size limit of Yih

Bi = the fixed proportion of habitat currently existing in cell i, and thus available for retention

Equation (24) is simply an owl population-maximizing objective function. Equation (25) approximates the (f)
connectivity functions with the Xij segments, defined in Equations (26) and (27). Equation (28) approximates the
carrying capacity functions (g) with the Yih segments, defined in Equations (29) and (30). Equation (31) limits the
habitat retention variables, Ci, to be less than or equal to the amount of habitat in each cell that is available for
retention (Bi). The expected population in each cell (pi) is determined by whichever (or both) of Equations (25) and
(28) are limiting.



To estimate the connectivity (f) function, we began by selecting cells from the study area where spotted owls were
least likely to be habitat-limited. Available evidence suggests that owl survival (and hence, likelihood of occupancy
of a cell) does not increase when habitat exceeds 60% of a cell (Bart 1995). There were 100 cells that had > 60%
habitat, which we included for the function estimation. Given that these 100 cells are not habitat-limited, we assume
that the populations observed in the simulation runs are determined by the presence of population in surrounding
cells. Next, we ran 50 replications of 100-year simulations. We estimated “population” of each cell as mean
occupancy, the number of years the cell was occupied by a pair of owls divided by the total years in the simulation
(100). Using average simulated population numbers across all replications for each of the 100 selected cells, we then
regressed each cell’s mean population against the total mean population of the six cells surrounding it. We tried
several functional forms, but settled on a log-log transformation that yielded an exponential function. The statistical
confidence in these equations was quite good with R2 values of ≈0.9. We also inspected plots to assure that the
functions were reasonable relative to the plotted data. These functions were then approximated in Equations (25) -
(27).

As with the connectivity (f) functions, we used simulation model results to estimate the carrying capacity (g)
functions to be as consistent as possible with the assumptions that were used in the simulation model. We plotted
mean owl occupancy per cell against percent habitat in each cell from simulation replications based on retention of
all current habitat, thus maximizing connectivity within the limits of the study area. We approximated this
relationship with three segments that have diminishing slopes (in Equations (28) - (30)). We did not statistically
regress these relationships because of the logical requirements that the intercept term had to be non-negative, and the
function had to be “convex” (exhibiting diminishing returns). Based on visual examination of the plots, the functions
assumed are good approximations, but it is possible that the carrying capacity (g) functions are somewhat sigmoidal
(e.g., logistic). Unfortunately, this functional form would create a nonconvex program in the optimization model,
and the approximation of the carrying capacity function would require integer methods (mixed integer programming
or separable programming). This nonconvex model would not be solvable with nonheuristic methods that ensure
optimality at the scale of our case study. This is a good example of the simplifications necessary to make the
optimization model solvable, even given the basic simplicity of the formulation in the first place.
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