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Abslract.--A multivariate decision tree model was used to quantify the relative

importance of complex hierarchical relationships between biophysical variables and
the occurrence of tropical forest fires. The study site is the Huai Kha Kbacng
wildlife sanctuary, a World Heritage Site in northwestern Thailand wbere annual fires
arc common and particularly destructive. Thematic layers of several biophysical
variables were combined in a GIS with field measurements of fuel loading and stand
physiognomy. Canopy vegetation (NDVI), rainlhll, geology, elevation, and forest
type explain most of the variation in burned surface across the mountainous land-

scape. Pixels with normalized vegetation difference index values of 0.7284 best
discriminated burned and non-hurned areas. Less impol_ant decision tree model
rules identified fire occurrence thresholds _br annual rainfiall of 1,285 ram, elevation

of 700 m, and distinguished between moisi evergreen and dry deciduous formations.
A map of the sanctuary was prepared using GIS to illustrate spatial variation in fire

hazard probabilities predicted from the decision tree model.

Forest fire is a common event in many human-altered of rare dry tropical forests and deciduous riparian forest,
ecosystems in the tropics (Malingreau 1990). However, and a high diversity of wildlife. It also contains a nearly
land managers and policymakers in many tropical complete representation of the fauna of central Indochina,
countries are not adequately prepared to cope with the enriched by some Sundaic and Burmese taxa. Forests at
increasing forest fire occurrences. Limited resources and HKK are composed of a mosaic of four different forest
financial constraints (Goldammer and Manan 1996) types: dry dipterocarp, mixed deciduous, dry evergreen,
encourage continued development of effective fire and hill evergreen. During the wet season, the deciduous
management support tools. In fbrest fire management, forests provide grass and bamboo for grazing wildlife. In
there is a recognized need for longer term studies of the the dry season, evelNreen `[brests supply browse and year
relationships between fire regime, landscape hetemgenc- round shelter.
ity, and human land-use (Turner and Romme 1994).
Effective management of wildfires requires a thorough The average annual rainfall in HKK is approximately
understanding of the spatial distribution of vegetation and 1,500 mm. During the pronounced dry season, two of the
human land-use, as well as their complex spatial relation- '['ourforest types, the dry dipterocarp and tl_e mixed
ships (Chou 1992). deciduous, are prone to Ibrest fires. Both have a tlfick

understory dominated by grasses and bamboo that can be
The ecology of forest fires is conaplex (Underwood and extremely dry and flammable. However, fire is widely
Christensen 1981), but fires tend to be distributed regu- believed to be detrimental to the ecological integrity of
larly in space and time within fire regimes specific to a the HKK forest mosaic. Seedlings of the evergreen lbrest
vegetation type, topography, and climate (Pyne 1982). are weakened or destroyed when ground fires sweep
Spatial statistical analysis is an effective approach to through the understory because these species have not
quantity the environmental interactions and variability of developed a resistance to fire. Conversely, plant species
fire at different levels of spatial and ecological organiza- common in the fire-adapted dry dipterocarp forest are
tion (Bailey 1994). provided with new opportunities for colonization along

tbe edges of the bnrned evergreen forests
The study area is the Huai Kha Khaeng Wildlife Sanctu- (Bunyavejchewin and Baker 1996).
ary (HKK) in northwestern Thailand. This sanctuary is
unsurpassed in mainland Southeast Asia in terms of both The main objective of this paper is to quantify in a
size and biological quality, leading to its declaration as a multivariate decision tree model the environmental factors
World Heritage Site in 1991. It supports extensive stands associated with fire occurrence. This statistical model is

used to produce a fire hazard probability map of HKK.
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variety of statistical and analytical models that differ in class membership. The roles are determined by a proce-
their complexity and data requirements. These include dure known as recursive partitioning. This involves

non-spatial thermodynamic models, and spatially explicit splitting the data into subsets based on the first predictor
methods frmn percolation theory, cellular automata, and and then identifying entirely different relationships with
expert systems. The following specific issues formed the other predicto_ in the two resulting subsets. In this
foundation for this paper: manner, the tree model attempts to construct a binary

decision tree by selecting the most useful variables from a
spatial dimension of fire peculiar to a heterogeneous set of candidate predictor variables (Baker 1993). It
environment (Campbell etal. 1995) provides infonnafion about the relative importance and
interaction of variables to identify patterns and hierarchical interrelationships of variables related to fire
processes (Chou 1992), occurrence. In this connection, it was adopted to identify
probability of occurrence (Vasconselos and Guertin environmental variables or groups of variables associated
1992), witll tile occurrence of forest tire.
appropriateness of model in tropical regions (Pickford
et al. 1992), and Data Preparation
scarcity of local research directed to tropical fire
management (Goldammer and Penafiel 1990). Biophysical factors related to the occurrence of fire were

drawn fiom maps of topography, vegetation type, climate,

As such, this study incorporates the strength of the and geology, and field measurements. Maps of the
integration capabilities of GIS and multivariate statistical distribution of previous fires were the main source of
modeling to handle spatial data of various fbrms in spatial information of fire occurrence. Field measure-
analyzing behavior pertinent to the occurrence of fire. ments yielded data about tirol type, green weight load,
Once the susceptibility of the study area to forest fire has fuel bed depth, and variables related to vegetation
been mapped together with a knowledge of its tactors' physiognomy. Laboratory measurements generated data
interrelationship, it can be used in forest rnanagement as about filel moisture content, fuel type propm_.ion, and the
an early warning tool in helping to refine firefighting estimated fuel bed volmne and density. Additional tree
strategies, direct hmnan land-use, and improve fire canopy data expressed in normalized vegetation differ-

prevention and control methods, ence index (NDVI) were extracted from Landsat Thematic
Mapper (TM) data. A Digital Elevation Model (DEM)

MULTIVARIATE DECISION TREE MODEL OF was used to calculate slope, elevation, and aspect vari-
FIRE OCCURRENCE ables. Field sampled fuel and tree physiognomy variables

were interpolated over the entire study area. In this
The statistical methods in this study follow a data-driven respect, topographic gradients and forest cover were used

(exploratory data analysis) modeling approach in an as a basis in interpolating various levels of fuel and tree
attempt to identify the variables most strongly associated structures.
with fire occurrence. Known locations &previous fire
events were used as the baseline information to analyze The Decision Tree Model

the biophysical variables associated with fire occulxence
and to develop the decision tree model. Multivariate Stratified random sampling was used to select a training
decision tree modeling was adopted because some sample (Lillesand and Keifer 1987). Spatial variation in
enviromnental variables are categorical, others are forest cover is considered to be the most appropriate vari-
continuous, and many variables are hierarchically able to stratify the landscape because the type and amount
interrelated. These properties are difficult to aceommo- of fuel vary among vegetation fmrnations (Clarke and Olsen
date in standard linear regression methods. 1996). A total of 1,000 randomly selected training pixels

were sampled, representing 0.03 percent of the total hum-

Decision tree modeling has its origins in artificial intelli- bcr of pixels in the study area. Eighty-two percent of the
gence research where the aim was to produce a system sample was in unburned areas, and 180 training samples
that could identify existing patterns and recognize similar were derived fi'om burned sites.

patterns in the future (Quinlan 1986 as cited by Moore et
al. 1991). The hierarchical structure provides an efficient Fourteen biophysical variables were used as predictors to
means for sorting observations into classes because at model the binary burned and unburned variable. Slope
each step, alternative path and/or class assignments arc exposure, forest, and geological variables are categorical
eliminated, variables, while elevation, slope, fuel bed density and

load, fuel moisture content, tree density and height, basal

Decision tree models use predictor variables to sequen- area, rainfall distribution, and vegetation index (NDVI)

tially split the sample into smaller groups with more pure are continuous variables.
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The tree function in S-PLUS v3.4 software (Statistical occurrence, compared with another variables. The

Science 1993) was used to create a decision tree model predictor variable with the highest deviance detem_ines

for classifying fire occurrence as a binary categorical the splitting of the data set. Likewise, comparing the
event with an associated probability value: deviance of the dominant predictor at a major split with

the root node deviance is a simple estimate of the propor-

treeO'esponse _ predictor_ + predictor, + ... + predictor) tion of infonnafion explained at each branch of the model.
Two parameters_'esidual mean deviance (RMD) and

Decision tree models capture interactions between variables misclassificationerror(MC_) were also used to
without explicit specification. This tree fimction also auto- quantify the level of improvement when each variable was
matically distinguishes between l_egression and classifica- incorporated into the model generation (fig. 2). In a
tion trees according to whether the response variable is con- stepwise manner, a tree model with a particular predictor
tinuous or categorical, respectively, variable omitted was compared with a tree model based

on all variables.

Bm:qed and unburned pixels were classified according to

the level of the predicted probability. The full tree model Assessment of Predictors and Attributes
yielded 52 terminal nodes representing 52 classification
rules. The tree revealed a residual mean deviance (RMD) _Iodel Improvement

of 0.2278, equivalent to the discrepancy between the
observed and model fitted values. The misclassificatiou The overall effect of a predictor variable on the tree model

error of the model was calculated as 0.053 (94 out of performance is particularly evident in the terminal nodes.
1,000 observed values did not fall into the terminal A significant difference in residual mean deviance and
leaves). This is an estimate of the predictive skill of the misclassification error parameters signifies a variable

model. The least important predictors (tree canopy important for the structure of the full tree model of fire
closure, average tree height, and basal area) were ex- occurrence.
eluded in the final tree model.

The inclusion of the annual precipitation variable in the

The first, most important la31ein tbe hierarchical model of full tree model has the most influence on the model
fire occurrence is the vegetation index (NDVI), then structure. Including this rainfall variable reduces the
rainfall (second level left split), and then elevation average deviance of the residual by alnmst 40 percent and

(second level right split) (fig. 1). Pixels in the rainfall increases the predictive ability of the model by 17 percent.
subset were further subdivided according to forest (fburth This corroborates observations by Malingrcau (1990),
level left split) and geological types (fourth level right who asserts that annual rainfall is the n]ost important
split). The latter branch produced the largest number of factor in fire occurrence and frequency in the tropics, due
decision rules, to variations in fuel moisture and loading. Annual

precipitation determines the succession of wetness and

The position of a predictor variable at the major branches dryness periods, green biomass accumulation and fuel
of the tree suggests its dominance in explaining fire loading, and soil microorganism activity and litter

decomposition.
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Figure 1. Classification tree for fire occurrence (pruned at 10 terminal nodes).
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Figure 2. Predicto_s" improvement based on residual mean deviance and misclassification error.

Geological substrate is the second most important variable respectively. An examination of the decision tree stmc-
in the fire hazard tree model. Parent material influences turn in the next section supports the insignificant con_ribu-

vegetation indirectly by detennining soil nutrient compo- tion of forest type and elevation. In contrast to stand
sition (Moore et al. 1991). The occurrence of fire among physiognomy variables, both forest type and elevation
deciduous forests is associated with decreasing soil were retained in the full tree model.

nutrients and decreasing soil moisture. In the Huia Kha
Khaeng wildlife sanctuary, there is a strong association Model Explanation
(Pr(2) < 0.0001) between the distribution of forest type
and geology. Including the geology variable decreases the NDVI did not significantly improve the predictive ability
average deviance of the residuals by 15 percent and of the decision tree model, but it was an inrportant
increases prediction by 23 percent, variable to explain the final model (fig. 3). The appear-

ance of NDVI in the main split of the tree model indicates

Aspect has more fire discriminating ability in the decision that burnt and unbumt cases can be best distinguished by
tree model than the slope variable. Cheney (1981) a particular vegetation index value (i.e., 0.7284). The
stressed that changes in fire behavior, even with increas- relevance of vegetation index in classifying fire occur-

ing elevation, are largely associated with changes in rence lies in distinguishing evergreen forest against the
exposure. In particular, slope facing the predominant deciduous type. The distinction between the two major
wind direction and solar heating have a considerable forest types eventually segregates soil parent materials of
effect on fuel moistme content, low (e.g., gr- red yellow podzolic soil) or high in nutrient

potential and elevation gradient below and above 600 m.
The amount of dead fuel load available for burning is the Many variables related to NDVI also appear in the deepest

most important fuel-related variable in the decision tree branches of the model. Rainfall and elevation variables
model, other than fuel bed density and dry leaf moisture are the next most important factors in explaining the
content. Previous ANOVA statistical analyses revealed occurrence of burnt areas. Rainfall accounts for 67

that fuel loading is different (Pr(F) = 0.0001) between percent of the amount of infonnation in the model
burned and unburned sites, ttowever, dry leaf moisture compared with 16 percent tbr elevation.
content is no different in burned and unburned sites (Pr(F)

= 0.619). Stand physiognomy, vegetation index (NDVI), The rainfall-dominated branch separates into forest and
elevation, and slope have a weak correlation with mois- geology subdivisions at 1,285 lrln*lrain per annum. In an
ture content. Stand physiognomy variables (tree canopy area lying in rainshadow where annual precipitation is
closure, average tree height, and basal area) did not less than 1,285 ram, the occurrence of fire is primarily

improve the full tree model. They are strongly interre- dictated by forest type, particularly of deciduous forma-
lated and highly correlated with fuel variables, NDVI, and tion. However, the occurrence of fire in the wetter region
forest type. of the sanctuary (i.e., south to southwest) is no longer

governed by forest type but by the complex interactions

Excluding forest type and elevation variables from the between geological material, topographic gradients, and
model improved the model by 9.7 percent and 2.6 percent, fuel variables. The data subset determined by geology
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10oo _ variables can be ordered according to the proportion of
_o total model deviance they explain: vegetation index

800 _ (NDVI), rainfall, geology, elevation, and forest type.
700 J

._ 600

_. _o Several attributes of forest type and elevation appear in

a00 distant branches of the model. In contrast to geology, the
_0o relatively small contribution of elevation and forest type is
100

o attributed to fire distribution, mostly in the moist ever-

Ro_Non° R_,_ZL EI,,ZR ro,_,t_i, G_,_o_4R green forest formation. At higher elevations where moist
_oaa., L_*_ofs_,ut cvergreen _brests are abundant, training samples did not

provide a distinctive represenlation of burned and unburnt
sites. They dominate unburned pixels at higher altitudes.

2o.7_ I[NElevafioaaR"i_ SPATIAL IMPLEMENTION OF FIRE HAZARD
I_ I MODEL

62,5% _Farest

ls_ An important use of a decision tree-based model is to
predict the value of the response variable for a known set
of predictor variables. In this case, an intert_ace between
the statistical decision tree model and G1S extends the

Figure 3.--Amount and proportion of deviance explained decision tree into a fire hazard probability map. Decision
by major predictors in the decision tree model, tree roles were converted into Arc Macro Language

(AML) code to map the predicted fire probability tbr each
pixel. The function docell in the GRID module of ARC�

explained 42 percent (62.5 percent of the rainfall subset INFO works on a cell-by-cell basis, interpreting the
contribution) of the deviance for the whole model. On the hierarchical rules as a sequence of spatial operations
other third branching level, forest type explained 14 (ESRI 1997). The specific number assigned by the

percent (20.7 percent of the rainfall subset contribution) decision tree model to a given tree node represented the
of the total deviance. The geology-dominated split navigation process lathe tree. Thematic layers &each
exhibits deeper subbranches that accommodate a large predictor variable were combined, and a map of predicted
combination of rules. Therefore, the main predictor probability &fire occurrence was created (see figure 4).

Table 1. Discriminato_y power qf predictors at first major split in decision tree model

Predictor Maximum Attribute
deviance

NDVI 154.40 0.7284
Elevation 142.56 593 meters
Forest 105.64 evergreen/dry dipterocarp, mixed deciduous with and without bamboo
Rain 80.26 1,145 millimeter

Canopy closure (Treecpy) 76.60 70.0%
Geology 76.41 O,Q1 ,gr/C,E,P, SD,pE
Fuel load (FIoad) 72.32 8.32 ton/hectare
Tree height (Treeht) 63.33 33.5 meter
Basal area 59.19 48.19 m2

Fuel bed density (Fdense) 58.22 0.069 g/ms
Dry leaf moisture content
(Leafmc) 57.16 12.76%
Tree density (Treeno) 52.49 27 trees/hectare
Slope 7.56 10.5 %
Aspect 6.98 east,flat,north,northeast,southeast,sout hwest/northwest,

south,west
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Using the known fire location map as reference, the attributed to few pixels of burned area in dense vegetation
modeled fire occurrence produced an overall mapping at bigher altitudes. At higher altitudes, fire locations are
accuracy of 90 percent. A fire probability threshold of usnally confined to a narrow range of slope exposure.
0.60 was used to distinguish between burned and un- These are the manifestations that the decision tree is
burned locations. This probability level produced a higher robust to outliers that tend to be segregated into distinct

percentage of mapping improvement against the possible separate branches. Fire occurring either in dense type of
random occurrence of burned and unburned locations, forest or at higher elevations is considered to be an

extreme case, but these predictors are not regarded as
SUMMARY AND CONCLUSIONS redundant. Ncvei_heless, decision tree modeling elinri-

nares the least important redundant predictors (i.e., tree

RainPall, geology, aspecl, and NDVI variables signifi- playsiognomy) beIbre growing the tree model. Assessing
cantly improved the predictive ability of the decision tree the overall importance of a particular predictor variable
model. NDVI, rainthll, geology, forest type, and elevation for predicting fire occurrence ignores the complex

explain nrost of the processes underlying the hierarchical interactions among variables.
rules that distinguish between varying probability levels
of fire occurrence. NDVI and soil parent materials are The dominance of climate over fuel variables suggests

highly correlated with forest type, so their importance in that fire in HKK may be driven by an extreme climatic

the model was apparent, condition (Bessie and Johnson 1995). This explains the
low correlation (r = 0.056) between dry leaf anoisture

The overall importance of each environmental variable tbr content and stand physiognomy. The dryness of the tree
improving the predictive ability of the decision tree model canopy, as represented in NDVI values, integrates the
was assessed from residual mean deviance and many environmental variables leading to fire situations.

misclass(fieation error parameters. Vegetation index
(NDVI) was ranked fourth after aspect, geology, and Geographic information systems (GIS) contribute
rainfall in terms of model improvelnent, but it appeared to primarily by integrating spatial environmental data with a

have the highest discriminatory power to distinguish burnt spatial statistical model and nrapping the model predic-
and unburnt pixels, tions. This knowledge-based spatial approach developed

predictor-response relationships outside the system and

The insignificant contribution of forest type and elevation applied them to data in the geographic database. Addi-
in the overall improvement of the predictive ability is tional research by the senior author goes beyond the

evaluation of fire initiation in point basis but incorporates

Figure 4.--Spatial implementation of decision rule model as fire occurrence map.
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the role of neighboring fire. The proximity from the main ESRI. 1997. ARC/INFO version 7.1.2. California:
source of ignition (i.e., human activities) was further Environmental Systems Research Institute, Inc.
integrated towards a mote comprehensive model of fire
occurrence. Goldammer, J.; Manan, S. 1996. Fil_ in tropical tbrests.

ITTO Tropical Forest Update. (6)1: Match.
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