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Abstract._;reater demands on forest _sources require that larger amounts of
information be readily available to decisionmakers. To provide more inforlnation
faster, databases must be developed that are more comprehensive and easier to use.

Data modeling is a process fbr building more complete and flexible databases by

emphasizing fundamental relationships over existing or traditional business opera-
tions. Data modeling uses a hierarchical series of models beginning with a concep-
tual model of the activity of interest. From the conceptual model, a logical model is

derived that captures more detail, but in an implementation-independent way.
Finally, the logical model is transformed into a physical data model by means of
application software. We show how sampling theory was used in a conceptual model
to provide an integrating framework for identifying fundamenlal relationships. By
using sampling theory, the final data structure organizes forest vegetation data
gathering as a scientific process, rather than as specific business functions.

A data model is "a picture or description which depicts examples include managing woody debris in forests
how data is to be arranged to serve a specific purpose" (Graham et al. 1994), the need for risk assessment of
(Modeli /992). Without such a model, developers are refugia-like tbrests (Camp et al. 1997), and recognition of

prone to build data systems that incorporate existing highly diverse forest structures important for endangered
relationships iastead of more fundamental data relation- species (Everett et al. 1997). These events have led to
ships. The rapidity with which forest values are evolving expanded inventories that include new elements and
and the complexity of forest resource data attest to the characteristics such as snags, dead woody material,
need for comprehensive data systems. The high cost of stumps, platforms and cavities, understory plants, canopy
such systems motivates the use of modeling procedures structure, and successional status.
and design concepts that promise longevity, flexibility,
and stability. Although only one of several data manage- Because of the extensiveness of forest vegetation data and
ment issues, the storage and availability of forest inven- the need for user support, larger integrated data structures
tory and other vegetation measu|_ments are crucial to the are being prmnoted. Multiple small databases are simpler,
credibility of any management information system, but each system is supported by fewer people, while

larger data systems allow redundancy in support person-

Social forces altering forest management activities are nel. A tradeoffis made for larger support capability at the
creating demand for resource information previously expense of greater complexity. The difficulty of keeping
considered of little value. Small wood marketing requires separate systems functioning with changing events and

information on ever smaller logs, while the resulting technology is also seen as a benefit of a larger integrated
thinned stands prompt re-inventory of conditions largely system, e.g., year 2K transition, distributed processing,

ignored in the past. Forest practice laws requiring etc.
retention of residual live and dead trees create a need to

"track" relicts and to develop inventories on dead woody The purpose of this paper is to show how sampling theory
materials. In addition, research continues to highlight was used to guide the development of a forest vegetation
dimensions of the forest not traditionally examined; recent database. Sampling fllem?¢aided in the integration of

disparate business operations into a single structure and

provided principles for evaluating data model logic. We
believe that sampling theory provides the foundation for
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subsequent ability to retrieve and use it. History, even data items and relationships in a logical but application-
recent history, is filled with examples of data structures independent way. Lastly, a physical model is constructed
that could not pass the test of daily use. How does one that implements the data and relationships of the logical
organize data so that they can be readily stored, retrieved, model using a specific database management system
and, most impol_ant, nsed? How can different organiza- (DBMS), such as Oracle. Limitations on the physical
tion units share the same data? How can redundancy and implementation may arise because the DBMS is unable to
its consequent implications for rising maintenance costs achieve all of the relationships identified in the logical
and introducing errors be reduced? Lastly, how can all model, or they may arise from basic business constraints
this be done and still maintain a level of flexibility, since such as limited computer capabilities or staff expertise.
processes and needs change over time?

Recognition that sampling data were being stored and
One approach is data modeling. In an earlier age, data manipulated confounded traditional database expecta-
models were simple and largely intuitive, ttoweve_; as tions--a paradigm shift was required. In a conventional
data and the demands of end users have increased, both database system, each "record" (obset_,ation, instance) is
the building process and the model itself have become important in its own right, i.e., assumed a true population
increasingly complex. The payoffto thorough data parameter known without error. A bnsfucss payroll
modeling is a system that is comprehensive, flexible, and database lists every individual their position and salary;
reliable, no variance or sample error is considered or allowed.

Each record represents only itself and every record is
A precursor to dala modeling is business function critical. But, when dealing with sample data, the interest
modeling, which begins by reviewing business practices is in parameters of sampling distributions that are related
and products to determine business reqnirements for a to a ftmdamental probability set (or population) and to

data structure (Barker and Longman 1992, Baskerville sample size (O'Regan and Palley 1965). The identity of
and Moore 1988). This process progresses through a an individual element is less important than its contribu-
series of steps to identify the hierarchy of functions tion to a parameter estimate. For example, line-intersect
executed by an enterprise, tligh-level lbrestry business sampling of a piece of woody material estimates volume
practices include inventory, timber cruising, land appraisal per unit area, not volume of the observed piece; a regen-
and exchange, experimentation, monitoring, regeneration oration survey returns a stocking sufficiency value and the
certification, and funber sale compliance surveys. The identity of any particular seedling is insignificant; and the
process of examining different functional levels ultimately presence of a tree on a variable-radius plot estimates basal
leads to identifying elementary business functions, area per unit area and individual tree dimensions are less
Examples of elementary business functions (tasks that impolntant. The expected value of a population is the
once started must be completed entirely to be useful) are information of primary interest, not the value of a single
inventory projections, measurement of vegetation data object. The population estimate is more important than
(sampling events), calculation of population parameters, the sampled element.
and outputting of tree lists for further modeling. An
important result of business function modeling is identifi- In a "sample" data system, information does not equal
cation of function commonality. Commonality occurs data. Data are fucts used to infer infomaation; information
when data can be shared between more than one bnsiness is knowledge about a population of interest. Sample data
function, e.g., collected tree data are used to estimate are the measurements about a population used to derive

parameters needed for timber sale, land exchange, habitat information. Rarely are sampled data the principal
assessment, etc. Identifying relationships and dependen- objects of concern; rather, they are a means to an end.
cies between different functions is the basis for model This paradigm shift required that sampling and data
building and is crucial to eliminating data redundancies, modeling requirements be integrated. Important reqnire-
Examination of the relationships between elementary, ments in sampling consist of defining objectives, identify-
common, and dependent business functions revealed ing populations, selecting a sample, making measure
sampling to be an integral part of all elementary functions ments, and estimating parameters. Important data
and that all high-level functions relied on population modeling requirements arc capturing fundamental versus
parameter estimates, existing relationships, eliminating redundancy and

enhancing data integrity. Examples of fundamental
The process of data modeling follows business function relationships in lbrest measurements are recognizing that
modeling. Data modeling designs a database using a dbh is both a diameter and a height measurement, that
series of related hierarchical models (Weldon 1997). The crown ratio is just a ratio of height measurements, and
first modeling level is a conceptual nmdel of the primary that Girard form class is an arbitrary stem form measure-
business activity to be snpported; the business activity mont. Eliminating redundancy improves the quality of
considered here is sampling. Based on the conceptual both data and processes, reducing problems with updates,
model, a logical model is developed that captures specific and seeking a single "best" data storage location. Good
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modeling designs integrity into the data model rather than Building the conceptual model involved defining the
imposing integrity through external processes. Relation- entities, recognizing their relationships, and identifying
ships between basic entities can enfolve integrity, elimi- instances &each entity type. Entity definitions were

nating multiple code checks and redundant attributes. For influenced by previous work of Palley and O'Regan
example, by including event entities in the model, (1961), O'Regan and Palley (1965), and Byrne and Stage
knowledge and counts of occurrences (such as plot (1988).
"taking") are explicit without the need for additional
attribute counters. The sample design, population rule, clement selection

role, and characteristic measurement rule entities (fig. 1)
CONCEPTUAL DATA MODEL DESCRIPTION together form the protocol (metadata) for describing

instances of sample events, sample elements, and mea-
Cochran (1977) listed 11 principal steps in a sample sured characteristics. A sample design entity specifies the
suxwey. Steps relevant to data model design are the purpose and type of suxwey,the parameters to be csfi-
objectives of the survey, population to be sampled, data to mated, and the number of conceptual population levels
be collected, degree of precision desired, methods of prescribed for the smokey. Different types of surveys lead
measurement, the frame, selection of the sample, and to difl?rent conceptual population hierarchies, e.g., a

smumary and analysis of the data. These steps were simple stand inventory has fewer population levels than a
redefined into eight conceptual data model entities (fig. stratified multistage design. Conceptual populations
I ). originate from physical populations by application of

1. Sample design population and element selection rules creating "sampled"
2. Population role populations for a specific design. Physical populations
3. Element selection hale are the set of physical objects about which we desire
4. Characteristic measurement rule information; it is the "target" population, such as all the
5. Conceptual population trees in a stand or in a forest. Sometimes the target and
6. Samplc event sampled populations are the same, but often there are
7. Sample clement "gaps" between them. A physical population can be
8. Measured characteristic sampled with many different designs, each design creating

a distinct set of conceptual populations. For example, a
watershed may be intensively sampled using a "wall-to-
wall" stand-level inventory design, or it may be sampled
as part of a stratified extensive sample. Each design

IF..........Phy_ | defines a different set of conceptual populations from the

same physical population. A sample design protocol is

static over time; changes to any of the protocol entities
create a new design. Relationships between the design

_ _. _Conceptua, protocol entities and the instances of sample events,

Pol_ulauon Populationnu, elements, and characteristics ensure integrity between the
....................7_ "why, where, and how" of a survey and the "what and

_( "\\ when" of data collection.

\\

t .......... I- I E,*m_nt "__ \ _ s_mpt_ Population rules establish the hierarchy of nonoverlapping
[._0o,_onRu,oj D_i_ conceptual population levels for a design (fig. 2). The

role describes the type and form of conceptual popula-
tions at each hierarchical level. For example, in stratified

_ Ch,r,_to_i__/ sampling, the population as a whole is the top-level

Sample Measurementjt population, strata compose the second level, and sampleau,_ point locations form the lowest level. The top-level
physical population might be a lbrested region, while the

top-level conceptual population consists of all lands
' within mapped strata, where each stratum consisted of

units greater than some minimum mapping-unit size.
Likewise, an experiment might be composed of blocks,
containing replicates of treatment plots. An experiment

Figure 1.---Conceptual model entities and relationships top-level conceptual population could comprise the
for a sampling survey database, totality of elements that might be treated in some fashion,

as in a random effects model. The blocks may occupy
physical areas, such as harvest units, while conceptually
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sampled from the population using different element

(a) I S'_a07 _ selection rules.

Element selection rules define for each population level

I , I the types of elements to be sampled, the methods by
Point / which elements are selected for sampling, and criteria for

41 ] ' ' ' creating subpopulations of elements. A population level
may be sampled with many different selection mles, hut a

(b) I Stratified I selection rule is unique for each population level; thesame rule cannot be applied to the same set of elements at

different levels. This that double
population ensures

I I counting does not occur. Further; within a sample design,

kP element selection rules must be mutually exclusive so that
Sa'._imber • • • the same individual element cannot be sampled with more

| than one rule. However, the same element may occur in
[ [ two populations at the same hierarchical level, e.g.,

Stand clustered variable-radius plots in which the same tree is

283 " " ' obsmwed at two or more points. The element selection
rule also specifies the method for identifying which

(C) ]Regeneration I instance of an element is selected lbr sampling (e.g.,fixed-area plots, horizontal point sampling, line intercept,

3P, census, etc.). Finally, the selection rule establishescriteria for creating subpopulations of elements (e.g.,
[ I large trees versus small trees), each subpopnlation of

[Block]4 ... elements associated with a different sample selection rule.
]- Examples of element selection rules are illustrated for a

I [ hypothetical "new forestry" timber sale cl-aise. Three

[r p]eateJ ] conceptual population levels are defined: the harvest unit,• • - several strips, and a systematic grid of points. For the

]" top-level harvest unit population, select all large (>32-
I [ inch dbh), live cedar trees using 3P (rule 1) and select all

large snags (>20-inch dbh) (rule 2). Within each stripPlanted tl_ural (population level two), select all sawtimber-size live trees,
except large cedars (rule 3). At each systematic point,

Fignre 2. Schematic examples o[conceptual population select pieces of dead down wood with a 50-foot line
hierarchies for: (a) a single stand inventor); (b) a intercept transect (rule 4), select understory vegetation
stratified stand inventopT, and (c) a randomized groups (forbs, grasses, and shrubs) using a l-m square
complete block experiment, grid (rule 5), and select all small snags (> 10 feet tall and

< 20-inch dbh) using a variable-radius plot (rule 6). Over
they represent a random sample of a harvest method, time the method appropriate for a specific element may
Similarly, a timber sale might be described by two change as the element moves from one subpopulation of
population levels, a single harvest unit and a set of sample elements to another. This causes no problenr because
points; or it may require three levels---a top-level popula- sample event integrity is maintained (see below). The
tion for the entire sale, multiple second-level timber- element selection rule is similar in concept to that
harvest units, and sets of third-level sample point popula- described by Byrne and Stage (1988), but unlike gyrne
tions within each harvest unit. Besides defining the and Stage, an element cannot be sampled with more than
sampling frame, population roles also specify methods lbr one selection rule in a given sample design. A change in
detmznining probabilities (weights) at each hierarchical the element selection role results in a change in sample
level. Conceptual populations may be spatial objects design and creation &different conceptual populations.
comparable to physical populations (polygons, lines, or However, this does not preclude evaluating sample results
points), they may encompass multiple physical locations, from multiple conceptual populations created from the
or they may represent theoretical populations. Further, for same physical population. Such evaluations are effected
multiple resource inventories, a conceptual population by the relationship between conceptual and physical

may include several different types of elements; in populations rather than through "linking variables"
essence, the population becomes a superset of different applied to individual measurements, as in the Byrne and
types of elements, each of which may be separately Stage design.
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A characteristic measurement role controls which A sample event entity is the application of an element
characteristics of elements arc measured and the measure- selection role to a conceptual population level at a specific

ment protocols. Measurement controls include the order time. The sample event is a pivotal entity for data
that characteristics are measured, criteria for deciding if a modeling. It uniquely relates measurements of elements
characteristic is to be measured, and the probability and to a population tbr a point in time. The sample event

minimum frequency of measurement. The order that "intersects" an element selection rule entity and a concep-
characteristics arc measured, along with measurement tual population entity bringing into being a cluster of

criteria, can be used to control which characteristics of an elements (trees, dead wood, shrubs, etc.) with known
clement are to be measured. For example, tree age might probability of selection. A collection of sample events for
bc observed if measurements of species, tree size, and a single type of element at a single point in time appears
damage were all within specified bounds, i.e., a site tree. equivalent to the definition given to a "conceptual
Subsampling of characteristics is provided by specifying population" by Palloy and O'Regan (1961) and O'Rcgan
both a probability and a minimum fi'equency of measure- and Palley (1965). We use the tenn more broadly; a
ment; e.g., subsampling of trcc heights might specify conceptual population can be a collection of sample
measuring 25 percent of heights with a minimum of four events tbr a single element, or a collection of sample
heights per species. Measurement protocols include units events for multiple element types, or even for a single
of measure, acceptable measurement procedures and sample event. The extent of elements encompassed by a
devices, measurement resolution, and legitimate values, conceptual population depends on the population level

Including units of measure within rules, rather than as and the sample events associated with it. Different
attributes of actual measurements, reduces redundancy sampling events arise from applicalion of different

and enhances data integrity. Specification of procedure, sampling rules to the same conceptual population, even
device, and resolution attributes help docmnent data when applied at the same time. I lowevel; sampling the

quality. Legitimate value attributes provide filters to omit same potential set of elements using a different element
recording of extreme characteristic values, e.g., excessive selection rule would constitute an entirely dil'ferent
ages or minor damages. Storing legitimate values sample design protocol, leading to a new set of conceptual
(particularly for calegorical or class values) in the design populations and a new set of sample events. This condi-
protocol allows new designs to evolve while protecting tion, or constraint, maintains integrity between conceptual
data integrity. For example, if class values change over population weights and sample events within the same
time (e.g., tree damage codes or structural stage classes), sample design protocol. For example, sampling trees in a
originally recorded values are retained but made equiva- stand using both variable-radius and fixed-radius element
lent to current values through translation tables, a process selection roles would require two separate design proto-
known as image joumaling, cols resulting in two separate conceptual populations and

two separate sample events, all for the same physical
Application of the population mles to physical popula- population. An important attribute of a sample event is
tions creates specific instances of conceptual populations, the probability associated with the selectcd element(s).
These instances are recursive within the defined popula- Although the element sample role dcfincs the basic
tion hierarchy, forming a parent-child relationship, sampling method, the precise probability of an element
Infomaation for higher level populations can be inferred may not be known until or even after the time of element
fi'om information at lower levels, while lower levels selection, e.g., 3P sampling and cluster sampling across
"inherit" characteristics from higher levels. Usually an type boundaries. The count of sample events from a

instance of a conceptual population is defined on a single time fhr a given population level is equal to the
physical population identifiable by a closed polygon, line, sample size from that population; an additional sample
or point. However, as previously mentioned, some size attribute is unnecessary. Assembling sample events
populations may not be directly related to physically for a given time is the first step in deriving parameter
identifiable populations, such as in an experiment. Two estimates for a population level.
inrportant population attributes are the area (when it
exists) and the sampling weight. Sampling weight is Sample elements are the basic units of a population on
especially important because different populations may be which characteristic measurements are made. Element
sampled with different probabilities, as in stratified types defined to date are: (1) an individual tree; (2) a
randmn sampling. Keeping sampling weights with the group of trees; (3) a piece of woody material; (4) an
population instance instead of with the population rule individual forb, fern, grass, or shrub; (5) a group of forbs,
allows greater flexibility for applying the same design f_ms, grasses, or sht'abs; and (6) the surface of the land.
protocol to difii_rent physical populations. Assemblages Although elements may occasionally mimic sample units,
of populations within levels and between levels with their such as in 3P sampling or single stage cluster sampling

appropriate weights permit estimating parameters for (Shiver and Borders 1996), they are always related to
either a priori orposteriori populations, some population level through the sample event entity.
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Instances of elements become part of a conceptual databases, such as a stocking table in a silvicultural
population sample by the application of an element database, a volume on a timber sale offering web page, or
selection role. For example, a tree is included in a a listing of slructural stages in a habitat monitoring
conceptual population if its distance from a point is within system.
some proportion of its squared-diameter when applying a
horizontal point selection rule; likewise, some of the land CONCEPTUAL MODEL APPLICATION

surthce will be included in a conceptual population if it
falls with the area of a fixed-radius plot. Each element is The concepls described have been used to build two
considered to have an area of influence; the conceptual different logical models (FSVEG of the USDA Forest
population establishes a location from which an element's Service and FRIS Ii of the Washington Department of
influence area is appraised using an element selection rule Natural Resources) and one physical model (FSVEG).

(Stage and Rennie 1994). An element can bc selected Although the two logical models differ in appearance,
using only one sample selection rule at a single time, but both implement a data-storage logic based on saurpling
the same element can occur in several different conceptual fundamentals. However, neither model completely
populations, e.g., the same tree selected on two different addresses all of the data management issues surrounding
variable-radius plots. Again, the marginal importance of a forest vegetation sampling due to the complexities of
specific element is noted; the requisite information is defining and translating sampling theory into physical
provided by parameter estimates, entities and relationships. We continue to rely on separate

supporting reports and maps to explain the fall breadth of
A characteristic is a quality or feature of an clement that our sampling sm'veys.
can be measured or assessed. Examples &quantitative
characteristics include tree height, canopy cover of a ACKNOWLEDGMENT
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