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Abstract. _Concern over potential global change has led to increased interest in the

use of mechanistic models for predicting forest growth. The rationale for this
interest is that empirical models may be of limited usefulness if environmental
conditions change. Intuitively, we expect that mechanistic models, grounded as far
as possible in an understanding of the biology of tree growth, may be more usefid in
an altered environment. Unfortunately, such models often produce only point
estimates, with no associated credible oi"confidence intelvals. The Bayesian

synthesis (BSYv;) method provides a solution to this dilenuna. We present a sum-
mary of the BSvN, and the results of an application of BSw to PIPESTE_f,a mechanis-
tic model of forest growth calibrated for loblolly pine.

There has recently been a great deal of interest in charac- defined as the difference between the rate of production of
terizing the uncertainty associated with mechanistic C substrate and the consumption of C substratc through
models. Such models are not constructed from data in the maintenance and consn'uctive respiration. These meta-

way usual stochastic models are, and hence the common bolic rates also have dimensions with units of C/ha/year.
measures of uncertainty are not applicable. In this paper,
we demonstrate the Bayesian synthesis method, first Dry matter is divided into foliar, feeder-roots, and woody
proposed by Raftery et al. (1995), for developing interval components. The proportion of C substratc allocated to
estimates with associated probability statements. We will the production of dry matter of each component is
use a variant of Raftery et al.'s original method to obtain constrained to keep the morphological dimensions of the
predictions from PwEsrEM, a mechanistic model of forest model stand in accord with pipe model theory (Shinozaki
stand growth, et al. 1964a,b). Losses of dry matter result lt_omthe

tumover of foliage and feeder-roots, the death and self-
PIPESTEM pruning of branches associated with crown rise, and the

death of trees associated with self-thinning.
The mechanistic model PIWSTEMdescribes the carbon

balance and growth of an even-aged mono-specific stand In addition to the information about the carbon balance
on an annual basis (Valentine 1988, 1990; Valentine et al. and production and loss of dry matter, PlWSTEMalso
1997). The version we used was calibrated for loblolly furnishes total basal area (m2/ha), average tree height (m),
pine. The mathematical model consists of 16 differential dominant tree height (m), average height to the base of a

equations and additional ancillary functior_s. The differ- live crown (m)l and tree density (stems�ha) on an annual
ential equations completely describe the dynamic proper- timestep. Estimates or measurement of these four
ties of a single model stand. The state variables that variables (ordinarily obtained from a real stand aged 1
characterize the model stand ordinarily are initialized with year or more) suffice to initialize the PIPESTEMmodeh
measurements from a real stand that has aged 1 or more
years since planting. Simultaneous numerical integration Valentine et al. (1997) modeled the growth ofloblolly
of the differential equations provides values of the state pine stands at three sites in Virginia and one site in North
variables at any subsequent point in time, and these values Carolina. These areas were chosen because Ihey arc the
serve as predictions for the real stand, locations of sample plots for the Virginia Tech Loblolly

Pine Growth and Yield Research Cooperative, and the
The growth rate of the model stand is defined as the data fi'om the sample plots could be used to evaluate the
difference between rates of production and loss of dry predictions from PWESTF_M.Predictions from the model
matter. Dry matter is measured in units of carbon C, and matched observed data well.
the rate of growth per unit land area is measured in units

of C/ha/year. The rate of production of dt2¢matter is In this study, we use a version of PIPESTEMthat includes a
routine that allows the user to specify the site index
(average height of dominant trees at 25 years of age) of

Professor and Graduate Assistant, Rutgers Unive_ity, the stand under study. The total number of model
New Brunswick, NJ, USA; and Research Forester, USDA parameters in this version of PIPESTEMis 24. Users must
Forest Service, Northeastern Research Station, Durham, specify values for all 24 parameters, and then the model

NH, USA, respectively, produces predictions according to the specified parameter
values. 501



BAYESIAN SYNTHESIS (1996) (hereafter referred to as RPG) demonstrated that
the root problem is a basic incoherence in the BSvN

Raftcry et al. (1995) developed the Bayesian synthesis method, which had heretofore gone unnoticed. The
(BSYN) method to characterize uncertainty in mechanistic problem may be stated as fbllows: the user specifies

models. The basic approach is to use all available premodel distributions on the model inputs and outputs.
information to generate a joint premodel distribution on In essence, the model is a transformation from 0 to _).
all model inputs (0) and model outputs (dp). In the spirit of Hence the model and premodel distributions of the inputs
Bayesian analysis, this distribution should reflect as provide an implied premodel distribution on the outputs.
closely as possible the investigator's state of knowledge Of course, the implied distribution will not be identical to
regarding both 0 and _ before running the model (knowl- the specified premodel distribution on the outputs. Hence
edge gained from the model may not bc included or it the incoherence: two differentprior distributions for the
wonld eventually be used twice). In tact, as we will see, same quantity.
the premodel distribution will often be a Bayesian
posterior distribution. The mechanistic model is then Fortunately, the Borel paradox may be avoided. As

used to translate the joint premodel distribution to a joint mentioned earlier, the joint premodel distribution rcpre-
postmodel distribution on 0 and O?. sents all that is known about 0 and _ exclusive of the

model. This knowledge must have been gained either
Mathematically, the model consists of a mapping from 0 subjectively or from data. Hence it is appropriate to
to qs(0), where O((t) is a submanifold in (d)-space, i.e., the consider a general situation where infbianation on 0 or _)
model connects particular 0 values with particular or both is represented by a traditional Bayesian subjective
associated 6 values. Now, let p(0, +) represent the joint prior distribution and/or a likelihood based on whatever
premodel distribution of 0 and _, and let N0, _) be the data are available. We will also assume that our premodel
joint postmodel distribution. In BSw, we assume the information on 0 and _2is from independent sources,
model is correct. This leads to: although not strictly necessary, as are our data (this will

be discussed further in the Application section). Then the

_(0,d)) oc p(0, (O(0)) if _ = O(0), joint premodel distribution may he thought of as com-
oc 0 otherwise, posed of four pans: two likelihoods and two priors, i.e.,

The essential idea of BSYNis that the postmodel distfiN_- p(0, _))oc q0(0) L0(O) q,(_) Lf_),
tion is proportional to the premodel distribution for any

values of 0 and _ that are connected by the model. Other where p(0, d))is the joint premodel distribution; q0(0) and

combinations of 0 and + are impossible according to the q+(+) are premodel prior distributions on 0 and +, respec-
model, and hence are assigned postmodel probabilities of tively; and L0(0) and L_(+) are likelihoods for 0 and _,
0. Inference about _ or 0 or any function of O)and/or 0 is respectively. Since likelihoods are known to be invariant
based on _(0, _). The joint postmodel distribution can be to transformation (e.g., see Schweder and Hjort 1996), the
marginalized to obtain a postmodel distribution of any incoherence must arise from the premodel prior distribu-
quantity of interest, interval estimates with valid poste- tions.
riot probability statements are available from the
marginalized posterior distributions. For instance, if we RPG and Givens and Roback (1997, hereafter referred to
let _z(_) denote the marginal postmodel distribution of+, as GR) suggested a solution to the Borel paradox: pool

then_the postmodel probability that d)is in some interval I the implied premodel distribution with the specified
is simply premodel distribution. For example, it is easy to find (or

draw an arbitrarily large sample from) qO,(_). This could

Prob(_ n 1) = II_(_) d_. be done by drawing a large sample for 0 from q_(0). For
each smnpled observation, run the model to obtain the

Note that BSvN yields postmodel distributions not only of associated value of 07. The collection of+'s would then

the model outputs (+), but also of the model inputs (0). The constitute a sample from q_0(_)" Importance sampling
latter may prove helpful in future modeling eftbrts. For more (see, for example, Rubin 1988) could then be used to

details, consult Raflery et al. (1995) (including discussion select a sample from qp,(0)). Then BSYN could be used to
and rejoinder), derive 7c+(_),the postmodel distribution lbr _.

Unfortunately, the original BSw method suffered from Unfortunately, unless the model is 1:1, the postmodel

Borel's paradox (Wolpert 1995). Essentially, this means distribution for 0 is not immediately available from 7c,(d?)
that the results were not invariant to re-parametrization of because numerous points in 0-space may map onto the
the model. Givens and Bravington (l 995) demonstrated same point in _-space. Hence, while we might be able to

that this is probably not cause for great alarm, but approximate the postmodel probability of some point, say,
nevertheless it is bothersome. Raftery, Poole, and Givens _ _,it is not readily apparent how this information might
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be used to obtain postmodel probabilities for all the 0/s Prior Distribution on Model Inputs
that might have led to _r

In Bayesian Synthesis, the premodel prim"distributions on

Raftery and Poole (1997) and Poole and Raftery (1998), the inputs, qo(0), should reflect all that is known about
hereafter referred to as RP and PR, respectively, devel- their feasible values. Consequently, we undertook the

oped the "full pooling" method for pooling the stated and arduous task of researching each of the 24 inputs for
implied priors on both the inputs and outputs, resulling in PIPESTEM.The results of this study are contained in

samples from 7c_(0)and _0(_), the postmodel distributions MacFarlane et al. (1998). For brevity, we will smmnarize
of 0 and _, respectively. See Green et aI. (1998) for more the findings here.
details.

We assunrcd the inputs were premodel independent. We
APPI,ICATION recognized that this was unlikely to be true, but we were

unable to specify reasonable prior covariances. Hence we

PIPESTEMis calibrated for loblolly pine. Given initial decided to allow" the model and available data to imtuce
stand conditions (site quality, average diameter, height, eovariances in the postmodel distributions (in fact, one of
height to the live crown, number of stems per hectare, and the virtues of Bayesian analysis is that such covariances
stand age), the model projects the growth of the stand are available at the end of the procedure). Note that

over time. Among the outputs produced by the model are assuming prior independence may actually be viewed as a
basal area (m_'/ha) (B), average stand height (m) (/4), and conservative procedure, hnagine the prior distribution in

number of stems per hectare (N). We used PIPESTEMtO tWOdilnensions, and for simplicity, assume they have the
simulate the growth of a model loblolly pine stand on the same scale. If the two parmneters are independent, then
Upper Coastal Plain of Virginia. the prior distribution is represented graphically by a

circle. In contrast, if we specify an apriori correlation,

Spacing Trial Data then the prior distribution would be an ellipse contained
within the circle. Hence the prior independence assump-

We used the Virginia Teeh Spacing Trial data, maintained tion actually allows one to consider more combinations of
by the Virginia Tech Loblolly Pine Growth and Yield the two parameters than would be included ifa prior
Research Cooperative. These data include three replica- dependence structure was specified.
tions of a number of spacings. Measurements available
include average stand height, basal area, and number of For 19 of the parameters, we were able to specify prior
stems per hectare. We arbitrarily assumed our model means and variances. We used normal priors for these
stand was planted at location 3 (Roanoke Rapids, VA). parameters. For two others, z and z, (see Valentine et al.
Data from plots at this location were used to compute 1997 or MacFarlane et al. 1998 for a complete listing of

L,(d)), the likelihood for the outputs. We did not specil}¢ a the P_V_SVEMparameters and their interpretations) we were
likelihood of the inputs, since we had no data to base one able to specify upper and lower bounds in addition to
on. In essence, this means we assunred a constant means and standard deviations. Hence, rather than using
likelihood for 0. unbounded normal deusities for these parameters, we

chose to use beta densities. The beta density parameters
Premodel Distribution were computed from the bounds, means, and standard

deviations using the method described in Johnson aud

Likelihood for ?/Iodel Outputs Kotz (1970, p. 44).

Fonr of the spacings in the Spacing Trial data yielded For the final three parameters (p, gj, and g2) our premodel
identical planting densities of 2,242 stems/ha. Hence we prior distributions were uniform. We could find no
chose this as our planting density. At the time of this published information on these three parameters. Hence
research, the latest data available were for age 12; we made liberal guesses about the minimum and maxi-

therefore, we used age 12 data. The likelihood was mum values, and specified the distributions to be flat in
assumed to be a three-dimensional normal distribution, between.

and the 12 observations (three replications, four spacings)
on basal area per hectare, average stand height, and Prior Distribution on Model Outputs
number of stems per hectare were assumed to be indepen-
dent realizations from this distribution. The mean basal We obtained a site index of 23.4 m (base age 25) for

area, height, and number of stems on these 12 plots were location 3 from the Amateis et al. (1984) Coastal Plain
31 5 me 10.9 m, and 2,101.3 stems�ha, respective y. site index equation. With this site index and the planting
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density, we derived prior distributions on three of the Details of Bayesian Synthesis for P:?Esr_a:
model outputs (basal area per hectare, average stand

height, and number of stems per hectare) at age 12 with We used the full pooling algorithm of Raftet3_and Poole

the aid of four common growth and yield models (Bailey to generate a sample of size 5000 fi'om re0(0). Note that
et al. 1985, Amateis et al. 1984, Clutter et al. 1984, and the sample from re0(0) may be thought of as a sample of

Harley et al. 1982). Unfortunately, it is not common for model trajectories. Thus, although rc(_) is a sample from
model developers to provide sufficient information to the postmodel distribution of 0)at age 12, we carl easily
develop variance estimates. Hence we assumed a normal obtain postmodel distribntions for _ at any age by running
prior distribution on the outputs with a mean equal to the the model to the desired age for each combination of

average of the predictions from tile four models. For the inputs in the sample from _r0(0).
covariance matrix, we used the maximum likelihood

estimate frmn observations on these variables from plots RESULTS
planted at densities of 2,242 stems�ha at locations 1, 2,
and 4 in the Spacing Trial data. Histograms from the postmodel distributions of B, H, and

N at ages 12 and 50 are presented in figurc 1. With these
Model Stand Specification samples it is possible to construct valid credible intervals.

For example, in table 1 we present the mean, and tile 2.5
In all runs of PWES'rEM,we initialized our stand at 2,242 and 97.5 pel_entiles for Ihe samples in figure 1. The
stems on land with a site index of 23.4 m. The initial percentiles may be regarded as end points of approximate

(age 1) average diameter and height were specified to be 95 percent credible intervals.
equal to the averages calculated from the plots planted at
2,242 stems at location 3 (IA2 cm and 0.41 m,
respectively). Initial average height to the base of the live Several of the histograms and/or smoothed densities
crown was arbitrarily specified to be 0.1 m. suggest bimodal distributions. The skew in the posterior

Axe12

I1

o o o.

Age50

BasalArea(rn2/ha) Averagetleight (m) Numberof Stemsperha

Figure 1.--Histograms of samples from marginal posterior distribution for basal area (m2/ha), average height (m), and
number of stems per ha, at ages 12 and 50.
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Table I. Means and approximate 95 percent credible intervals Jhom posterior distributions

Lower limit Upper limit
Attribute Mean (2.5 percentile) (97.5 percentile)

B (riP�ha), age 12 31.9 30.1 33.2
B (nP/ha), age 50 43.1 36.9 53.8
H(m), age 12 11.0 10.7 11.2
H (m), age 50 34.1 27.8 45.2
N (stems�ha), age 12 2,108 2,057 2,174
N (stems�ha), age 50 678 37 1,231

densities for B and H seems to have reversed between outputs of the model, in addition to the model itself. The

ages 12 and 50. Another noteworthy outcome is that end result is a joint posterior distribution of the model
while the specified prior mean for B of 31.6 m-'/ha was inputs and outputs, which may be used to make valid
near the center of the age 12 posterior density, the inferences about any of the input or output parameters, or
specified prior values for H (12.6 m) and N (1942.4 stems/ any mathematical function of thenr.
ha) do not appear to be plansible values according to the
age 12 posterior densities. On the other hand, the ACKNOWLEDGMENTS
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