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Abstract. Variables based on stand densities or stocking have sampling errors that

depend on the relation of tree size to plot size and on the spatial structure of the
population, ignoring the sampling en-ors of such variables, which include most
measures of competition used in both distance-dependent and distance-independent

growth models, can bias the predictions obtained from regression analysis.

The bias occurs if the sampling errors differ between the calibration data and the

prediction data. Differences arise from several sources. For example, plot designs
often differ between two major applications of growth models: updating inventory

statistics, and simulating effects of proposed nranagement actions. Even in a single
analysis, not all data come from the same plot size, especially if plot designs vary by
diameter classes. In addition, in growth modeling, plot-size to tree-slze relations

change as the trees grow and management modifies spatial structure. However, if the
sampling errors of the variables are used in estimating model coefficients, and again
when the model is applied, the same model can be used with different plot designs.
Local variation in stocking can be measured by individual subplots in tile context of

a distibution of plots within the stand. When imbedded in a (semi-) distance-
independent, individual-tree model for stand development, the Structural-Based-
Prediction method increases model sensitivity to competition compared to ordinary

least squares estimates. This model has particular application to spatially irregular or
patchy stands.

Models of many ecological processes depend on variables first to directly solve the problem posed by sampling
that are defined by spacing, density, and size of individual elxors of the competition variables in growth models.
trees or of aggregates of trees at a location. Examples

range from the size of big-game home-ranges (Pauley et We address two sources of sampling error in competition
al. 1993) to estimates of sediment deposition (Elliot and variables within a single plot or subplot, and between
Hall 1997), from estimates of Net Primary Productivity to the several subplots that may be used to characterize the
detailed models of stand development, and you can supply spatial variation within the stand or inventory clustel:
many more. Once developed, application of these models
by resource analysts requires inventory data to provide Figure 1 illustrates the sampling error in just the tree
initial values of density and stocking. Unfortunately, both density component of competition as measured on a
modelers and inventory analysts usually overlook the single plot applicable to a single subject tree. Here, the

effects on their analysis of Predictor variables that are sampling variance of density about the subject tree is the
sample-based, and hence include a random error. Ignor- variance among all possible random sampling points that
ing the error can lead to underestimating rite significance would include the subject tree. This variation depends on
of variables and to biases in the predictions (Fuller 1987, the size and shape of plot and on the spatial arrangement
Jaakkola 1967). of the trees. For stocking measures such as basal area per

unit of land area, tree size distribution is a component of

Although statistical solutions for errors-in-variables the variation. Tree-centered measures of competition are

problems have been finding their way into forestry also subject to sampling variation, although from different
applications (Goelz and Burk 1996, Kangas 1998, Lappt sources (Schreuder and Williams 1995).
1991), Stage and Wykoff (1993, 1998) appear to be the

The within-plot source of variation is seldom measured,
so we estimate it from a model of spatial variation. The

Principal Mensurationist (retired) and Research Forester, second soume of variatior_M_etween the subplots within

respectively, USDA Forest Service, intem'_ountain an inventory cluster at a location or within a stand
Research Station, Forestry Sciences Laboratory, 1221 S. examination--is readily computed from the inventory

Main Street, Moscow, ID 83843, USA; (208) 883-2345; data. However, if the inventory measures only a single
FAX: (208) 883-2318; astage@moscow.com; plot at each location, the same variance model used for

wykoff@moscow.com, the within-plot variation can be invoked.
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INTRODUCING GROWTH MODELS TO the competition variables, this variance may depend
SAMPLING ERROR on the standard error of the mean between subplots.

If the competition variable is defined separately for
Models based on ordinary least squares estimation using each subplot, dcvelop a model of the variance within
inventory data can avoid the bias pat't of the problem if the subplot.
they are, in turn, applied to inventory data having the
same error properties (Stage 1977). This criterion is 2. Subtract the sampling error covariances characteriz-
violated when plot sizes (or number of plots per stand) ing the calibration data set from the covariances of
differ between the calibration data set and the application the observed variables. Save the coefficients of this
data set. It is further violated in iterations of growth structural model and relevant parts of the inverse of

models beyond the first cycle of prediction if plots of its covariance matrix to be used at prediction time.
differing sizes are used to sample different size classes of
trees. During a projection, tree sizes change, but plot size 3. When calculating predictions, the error covariances
is fixed at the time of the inventory. Likewise, outputs applicable to the new data set are added to the
from growth models used as input to models of other reduced covariance matrix from step 2. The result is
ecosystem components are vulnerable to the same a new covariance matrix of"observed" variables.
problems. From its inverse and the coefficients of'the structural

model, new coefficients are calculated for prediction.
Our solution to the problem of using different plot sizes Fortunately, there are useful shortcuts to the matrix
and numbers of subplots per stand or location has three algebra that cut this task to a reasonable size. (This
steps: step is the major difference between our procedure

and the one used by Kangas (1998)). We have called
1. Estimate the sampling errors applicable to the this three-step procedure "Structural Based Predic-

calibration data set. Depending on the definition of tion" (SBP).
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Admirers of Robert Service may have the sense that this Comparison to Ordinary Least Squares (OLS)
procedure bears certain similarities to Chewed-Ear Estimation
Jenkins" solution to the syndicate holding bets on the

outcome of his hair restoring eflbrts. While his wife Differences between the structural model and an ordinary
poured on the hair-restoring elixir, Chewed-Ear secretly least squares model of some nolnthem Idaho inventory data
shaved off the fuzz. However, we show that effects can be are shown in several figures; figure 2 shows remarkable
substantial when either plot configurations differ, or when changes in the efi'ect imputed to crown ratio (including
management action such as thinning changes the variation the term Ihat depends on dbh). Note the complete reversal
within or between plots, of the trend with dbh. Differences in predicted diameter

increment are illustrated in figures 3-5 (Wykoff 1997).
APPLYING SBP IN A SEMI-DISTANCE- Both BA and BAL were competition variables tbr which

INDEPENDENT ._IODEL OF FOREST GROWTH sampling variances were estimated. Because BAL is
computed from basal area at the sample point occupied by

The model we developed was motivated by the need to the subject tree and BA is a stand average, allowing for
provide a predictive model of stand development with their relative sampling variation greatly increases the
explicit representation of within-stand (or within-location) sensitivity of the model to local competition effect (fig. 3).
variation in stocking. In particular, we wanted a model But differences are not limited to effects &variables
that could represent stocking variation at a broader scale measured with salnpling error. The effect of dbh also
than seems feasible with distance-dependent formulations, changes markedly (fig. 4). In this, as in many similar
Therefore, the model was designed to be used either with models, crown ratio can be the alias for direct effects of
a stand examination consisting of a scatter of subplots competition. Explicitly recognizing the error variance of
through the delineated stand or with an inventory of the competition variables shifts competition effects from
clusters of subplots. An inventory in which the cluster is the crown ratio term to the competition terms (fig. 5). In
reduced to a single plot at widely scattered locations is analyses of thinning effects, the immediate response will
just a special case, for which the model could be used be greater because crown ratio takes some tinae to regain
with some loss of resolution, its natural correlation with stocking.

Competition Measures We compared the effect of two different sampling designs
on the relative behavior of the SBP-based model. The

To meet our objective of increasing sensitivity to spatial "stand" for which the simulations are calculated was
variation, we provided for two scales of competition generated by the Regeneration submodcl of the Inland
effects: effi:cts dependent on the local intensity of Empire variant &the Forest Vegetation Simulator
stocking as measured by a single, rather small plot; and (Prognosis). From this stand projection, a "patchy" stand
effects that depend on the general context of stocking in was created having equal area of each of three age classes.
which the plot is located. Means of 20 simulations of two scenarios--thinned, and

Background competition is represented by the mean of
stand basal area per hectare (BA). Its sampling variation 2.0-

is simply the standard error of the mean basal area of the ._ \\
subplots in the stand. The measure of competition for o \\ OLS ......

-_ 1.6" -,, SM
trees within a subplot is the product of basal area per unit _ .,
area at that particular subplot multiplied by the percentile o° 1.2- ""
of the subject tree in the diameter distribution of all trees ct" _ _-- .........
ill the stand. Because this index is analogous to the basal ¢D 0.8-
area in larger trees introduced by Wykoff et al. (1982) and ._ .
Wykoff(1990) and used in nrany increment models, we "_5
continue to refer to it as BAL. Because the single plot t_= 0.4-iii
does not provide a sample-based estimate of its basal-area
variance, we derive a first approximation to the sampling 0.0- , , ,
error of BAL as a function of the basal area variance in a 20 413 60 80 100

Poisson (random) field of stem locations, the percentile, DBH (era)
and the total stem cmmt in all subplots (Stage and Wykoff
1998).

Figure 2.-.-Effect of crown ratio on prediction of ln(DDS)
in the structural model is very differentJi'om its effect
in the ordinary least squares model because of
correlation with the competition variables.
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Figure 3._Differences in response surface between ordinary least squares model (OLS) and structural model (SM)--

varying BAL and BA.
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OLS Model--BAL=100 sq ft, CR=0.4
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OLS Model--BAL=t00 sq ft, dbh=10 in
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Figure 5.--Differences in response smface between ordinary least squares model (OLS) and struetural model (SM)--
varying CR and BA.
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unthinned _re compared. The differences between the the tradeoff between optimizing the statistical precision
two inventory methods are the result of simulating the and optimizing the resolution with which the biological
stand as if initially "inventoried" by 24 plots_ach 1/300 processes can bc represented. Now relations between
acre (0.00135 ha), or as if inventoried by a single plot of I subplot size and number and the diameters of trees can be
acre (2.47 ha.). The model calibration data were actually varied to capture the biological structure of the stand,
inventoried by variable-radius plots invariably larger than thereby sharpening the portrayal of future development.
1/300 acre (0.00135 ha). In turn, thinning algorithms used in simulations can base

thinning decisions on local conditions in much the same
For the more uniform stand left after thinning, projections way that a silviculturist would treat different parts of the

are nearly coincident (fig. 6). It could be inventoried same stand.
either way. However, the single-plot projections of the
unthinned stand are ahnost parallel to the thinned projec Sampling errors used in SBP for the two competition
tion, indicating little response to thinning. The 24-plot variables, BA and BAL, depend on size and number &the

projection of the unthinned stand, by comparison, subplots. Size of plots can be varied, but they should be
increases less rapidly, which indicates that there was an small enough that all trees in a single plot arc close
immediate response to the thinning, enough to interact through, say, no more than one

intenqaedlary. Representation of the biological structure
IMPLICATIONS FOR INVENTORY DESIGN of the stand can be improved by a design using plot sizes

that increase with tree diameter--either smoothly as in

This development in growth modeling raises new ques- "prism plots," or in several steps as in nested plots.
tions about optimal inventory design. Because we make Circular plots are preferred over rectangular because they
explicit usc of statistical effects of va@ng plot size as have less edge. The BAL variable is favored in two
part of the increment estimation process, we can evaluate respects by sampling with variable-sized plots. First,

] :

Figure 6.--DiJ]_rences in projections of a patchy stand attributable to the sampling design describing the stand to be
projected. Two scenarios are compared: thimwd vs. unthinned.
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trees larger than the subject tree are sampled on larger Jaakkola, S. 1967. On the use of variable size plots for
plots so that fewer of its competing trees would be "off increment research. In: Anonymous, ed. Vol VI,
plot." And second, efficiency with which the basal area Proceedings XIV International Union of Forestry
component is estimated is increased in comparison to Research Organizations Congress Sect 25; Munich,
fixed-area plots. Gennaw: 371-378

ltere to Ibre, the only use of variance among plots in a Kangas, A.S. 1998. Effect of errors-in-variables on
cluster or stand has been to optimize estimates of popula- coefficients of a growth model and on prediction of
tion means or totals. While at least two subplots per growth. Forest Ecology and Management. 102: 203-
location provide an estimate of sampling variance of mean 212.
BA, the variance of the variance is high for two to tln'ee

plots per location. For example, in an infinite population, Lappi, J. 1991. Estimating the distribution of a variable
the variance of the sample estimate of the variance is: measured with error: stand densities in a forest

inventory. Canadian Journal of Forest Research. 21:

_-1I 1 469-473.

2o- n-1

V(s')= 1+ -2-n- Gz Pauley, G.R.; Peek, J.M.; Zager, P. 1993. Predicting
white-tailed deer habitat use in northern Idaho.

where G2 is the Fisher measure of kurtosis. Journal of Wildlife Management. 57: 904-913.

Note, however, that the biases in the predictions with SBP
now depend on variances of variances, rather than on just Schreuder, H.T.; Williams, M.S. 1995. Assessing mea-
the variance as with OLS. sures of tree competition using fixed-area, variable-

radius, and horizontal-line sampling. Canadian
CONCLUSIONS Jounaal of Forest Rcsearch. 25: 1578-1582.

in this paper, we addressed the question of how inventory Stage, AR. 1977. Forest inventory data and construction
design affects use of inventory data for analyzing altema- of gmwth models. In: Schmid Haas, R, ed. Invento-

tive management scenarios. The false assumption that ties on successive occasions. Papers presented at the
competition variables are known without sampling error XVIth IUFRO World Congress in Oslo, June 20-July
was shown to have substantial effects on coefficients of 2, 1976. Berichto Nr. 171, EidgenOssische Anstalt ftir

models. The procedure we call Structural Based Predic- das forstliche Versuchswesen CH8903 Birmensdorf.
tion was demonstrated using a semi-distance-independent
growth model as example. Implications of SBP for Stage, A.R.; Wykoff, W.R. 1993. Procedure for represent-
inventory design were discussed in the context of using ing spatial variability within distance-independent
inventory data and a growth model to project future stand stand growth models: an application of measurement
attributes and to evaluate silvicultural alternatives, error models. In: Burkhart, el al., eds. Modeling stand

response to silvicultural practices. Proceedings of the
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