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Abstract.--A proposed national forest inventory fur Canada is to report on the state
and _rends of resource attributes gathered mainly from aerial photos of sample plots
located on a national grid. A pilot project in New Brunswick indicates it takes about
2,800 square 400-ha plots (10 percent inventoried) to achieve a relative standard

crror of 10 percent or less on 14 out of 17 estimates of furest strata (cover type)
proportions; it takes about 3,300 plots of similar size to achieve the same precision
target on 68 of 85 strata type x age proportions. Minimum cost solutions for fixed
targets of relative precision and powcr inclnde plot sizes fi'mn 71 to 192 ha and
sampling intensities from 0.2 to 3.5 percent. Multivarlate solutions exploiting the
covariance in the data called lbr less sampling than univariate solution.

Plot size and number of sample plots are pivotal design strata and strata x age classes (we llenceforth use the more
parameters of any forest inventory. Procedures for generic word strata in place of cover types).
optimizing these design parameters are well documented
for single quantitative characteristics but less so for MATERIAL AND METHODS
multilevel Categorical variables such as forest strata
(Rochon 1989). The effect of plot size on salnpIe Data
variances depends on the extent and spatial distribution of

the sampled attribute, and is perhaps best described in Classified GIS polygons from the New Brunswick forest
terms of the spatial correlation function (Mahalanobis inventory (1981-1996) were used as data for Jhis stud),.
1944) or the intraplot correlation _3. Briefly, the variance Delineation and classification of polygons were done
among plots equals the average within-plot covariance, from aerial photos (Leckie and Gillis 1995). Simulated
The statistical efficiency of a plot size is governed by the sampling from this GIS coverage with 723 square plots of

decay rate of(5 as plot size increases. 6.25, 25, 100, 225, and 400 ha located on a square 10- x
10-km grid furnished the data. The 723 plot locations

Canada is contemplating a new design fur the national constitute all the 10- x 10-1an nodes on the national forest
forest inventory. Data on area and extent of forest cover inventory grid of sample locations in New Brunswick

types (based on species composition and structure) are (7,265,912 ha). Figure I illustrates the grid and the GIS
pivotal to the success of the inventory. Cover type data coverage extracted tbr each sample plot. Data for a single
will come from interpretation of aerial photos (scale plot consist of the area and classification of each polygon
around 1:15000) of inventory plots located on a national inside the plot boundaries. The strata classes used in this
grid. Photo interpretation is suited for the estimation of stody are listed in tables 1 and 2. All other classes were

forest strata (Acka 1993) and can accommodate substan- lumped into "others." Collectively we call the classes
tial sampling efforts in a cost-effective way. Ideally the strata when no age distinction is made and we call them
photos would be taken and interpreted in a manner strata x agc when an age group is associated with the
compatible to the reporting dates of the national inventory, class. The extracted data emulate, in part, the data types
Issues such as the size and number of plots needed to that would be generated during a national forest inventory.
achieve a precision target on forest cover estimates have
not been settled yet. To fim_ considerations, three pilot Methods
projects mimicking various design alternatives were
established in New Brunswick, Ontario, and British Photo plots in the national inventory are the primary
Columbia to investigate the impact of plot size and sampling units (PSU). Each PSU is considered an

nmnber of plots on precision of estimates. In this study, assembly of equally sized square secondary sampling
we focus on the precision of estimates of areas of forest unils (SSU). The size of SSU was chosen as the mini-

mum area that a photo interpreter would try to accommo-

Research Scientist, Research Officer, National Forest date in the delineation of the photo plot into strata_
Although the size of SSU is not explicit, we chose 0.01 ha

Inventory Manager, respectively, Depamnent of Natural as the size of one SSU (Magnussen 1994). Note this
Resources Canada, 506 West Burnside Road, Victoria, 0.01-ha threshold is not to be confused with the minimum
BC, Canada V87 IM5.
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Figure 1.--Inventory domain (New Brunswick) with a l O-x l O-km sample grid. Blow-ups provide details of three i2 x2

km primary sample units (PSI/). Locations _?fseven ai/por_ (hubs) and the area they serve }'br the acquisition of
air-photos are marked with circles and dashed lines.
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Table 1. Sample estimates of strata proportions ( _ ) in New Brunswick, standard deviation of

propensity of finding the strata in any given location ( (_prop. ) " Results are based on

interpretation of 723 plots of size 400 ha on a regular 10 x 10 km grid. Fit statistics of

^ A

sample proportions to beta model (Dmax, P( D IH0)) describes thefit of the observed

proportions to a beta distribution.

Strata P ¢_prop. /)max P(/9)
Balsa_ F/_ - Intolerant _ 0.014 0.246 0.037 0.790

Balsma Fir - Spruce 0.060 0,269 0,068 0.290

Balsam Fir - Tolerant Hardsr>Dd 0.014 0.245 0.066 0.430

Intolerant _ - Balsam Fir 0.018 0.247 0.061 0.440

Intolerant Harcloood - Spruce 0,032 0.251 0.072 0.300

Intolerant _ - Tolerant _ 0.020 0.249 0.062 0.440

Intolerant - _ 0.046 0.259 0.058 0.350

Other - Soft-wood 0.028 0.250 0.066 0.310

Pine 0.010 0.246 0.026 0.800

Poor Site - Spruce 0.009 0.244 0.036 0.760

Spruce - Balsam Fir 0.163 0.304 0.052 0.180

Spruce - Intolerant _ 0,023 0.247 0.090 0.300

Spruce - Tolerant _ 0.033 0.251 0.099 0.240

Tol6n_nt _ - Balsam Fir 0.014 0.246 0.062 0.440

Tolerant Hardsr_d - Intoler-_nt Harc%Nocd 0.021 0.250 0.052 0.490

Tolerant _ - Spruce 0,030 0.252 0.085 0.250

Tolerant - Hare%wood 0,084 0.288 0.068 0.220

Table 2. Sample estimates of age group proportions in New Brunswick, standard deviation of

deviation of probability of finding an area of one of the five groups in any given location

(_ prop. ) " Estimates are based on interpretation of 723 plots of size 400 ha on a

regular 10 x 10 km grid. Fit statistics of sample proportions (area-weighted average

across Strata x Age groups) describes fit of observed proportions to a beta model

(Dma x, P(DI Ho) ).

Agegroup p dprop" Oma x P(D)
RecJenerati_ 0,036 0.013 0.011 0.800

Imr_tur6_y0t_ 0.053 0.018 0.013 0.800

I/m_ture-old 0.205 0. 071 0.041 0. 562

Ynture 0.287 0.i01 0.044 0.537

Old 0,039 0. 014 0.015 0. 799
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area assigned to an individual forest stand. A SSU should 1980), or estimation from the distribution of sampled
contain only a single stratum (stratum x age) category, propm_ions of strata areas (Prentice 1986) is possible.

Larger SSU's will inevitably be mixed. Conceptually, an
observation is made for each SSU in a PSU. In other We chose to estimate 8 from the observed distributions of

words, we are dealing with a single-stage cluster design the 723 values of the proportion of a plot classified to a

(Thompson 1992). All areas were rounded to nearest 0.01 given stratum (stratum x age). Although not pursued
ha before the analyses, further in this study, this approach is ideally suited for a

hierarchical analysis of the effect of plot size (James

Estimation of strata proportions and their sample vari_ 1975). When the probability of finding a given stmtmn
ances Ibllowed standard procedures for single-stage (stratum x age) in an area ofM SSU's follows a beta
cluster sampling. The variance estimator of a forest type distribution with parameters c_vtand fiat (the subscripts

proportion (p) estimated from a sample of n>,primary ret_r to the fact that the distribution depends on the
units each with M SSU's taken frmn a finite number of number of SSU's in a plot), it call be shown that:

NMprimary units of the same size is simply the wlriance
of the primary sample unit corrected lilt"the sampled 1 (3)

fraction of the linite population. Another way of express- _M -- (_M + tiM + 1)
ing this variance, and one that is better suited to explicate
the impact of plot size, is (from Thompson 1992, page
122 after division by the square oflhe total size of New Maximum likelihood estimates of c% and LI_(Prentice

Brunswick, N2v • M_): 1986) were obtained for each stratum and all strata x age
combinations from the observed proportions of a plot

d 2M'pt) (NM--nM) (NM'M-I) (1) occupied by a stratum or strata x age. The cumulative_" distribution functions of the ensuing beta models were
H M • N M N M -- 1 compared to the empirical distribution. A test of no

(5"2 difference was sustained [test: Kohnogorov-Smimov,
• __ " Conover paired with Hohn's sequential rejection proce-

M 2 ' (1 -+- (M - 1). aM) dure] throughout (tables I and 2). When averaged across

^,. . . ^ strata, the intraplot correlations were: 0.47, 0.29, 0.17,
where cs- is the estnnated total population variance, 8_ the 0.12, and 0.11 for the 6.25-, 25-, 100-, 225-, and 400-ha
average intraplot correlation in plots with M SSU's, and plots, respectively. Relative standard errors, i.e., the

N_ is the number of primary units of size M in New standard error in percent of the estimated mean propor-
Brunswick (a unit is counted as "in" if the majority of tion, were 1.0, (/.9, 0.7, 0.3, and 0.3 percent. Correspond-
SSU's in the plot were part of the land base of New ing correlations averaged across strata x age combinations

Brunswick). Estimation of 6,_ is thus central to quantify were about 0.03 lower and with relative errors of 0.9 to
the impact of piot size on samplc variances. Equation 1 1.3 percent. In 11 strata x age categories, we failed to
can be extended to the covariance between two strata estimate the intraclass correlations for the 6.25-ha plot.

(strata x age) in a straightforward manner. Another 11 estimates failed to show a monotonic decrease
with plot size. We excluded these 22 (of85) cases from

The intraclass correlation within a plot arises because the the analyses of trends in the strata x age results (4). A

joint probability of two separate SSU's having the same MANOVA approach to estimation of _5gave estimates of S
strata value deviates from their expected value. Fomlally, that were identical to within 0.002. Estimated cross-

for a categm'ical class T occurring with probability p in correlation 8 between two strata (i,j, i¢-j)were exploited
the entire population (of SSU's), the average intraclass for predicting all possible cross-correlation for any plot
correlation in a plot with M SSU's (enumerated by Uj, size M in the same way (4) as was done for tlie univariate

U_,.._.,U_,. with Uj = {1",not T} for i= 1,2,...,M) is : correlation. Estimation of 6 by way of estimating a
Dirichlet mnltinomial (Brier 1980) produced frequency

[Pr(Ui = T, Uj = T) - p2 weighted results comparable (differences less than 0.01)_'M =- E -] (2) to the mean intraclass correlations of strata or strata x age

Vi,jeMAj¢-i p(1-- p) observations.

The joint probability for a single pair of SSU'S will For each stratum and stratum x age, the 8 for a plot with
depend on the size of SSU's and the size of the plot. The M SSU's was predicted from:
average 8 for a plot, however, depends only on the actual
plot size. Equation 2 suggests a direct estinration of_i arcTan[- (fc + Log[M - 1])/o3 (4)

based on values assigned to the M SSU's in a PSU. _ (M) = - a:
Estimation of 8 through analysis of variance (Landis and
Koch 1977), estimation of a Diriehlet multinomial (Brier
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where _, and coare regression parameters to be detemained significance with a probability of 90 percent (test power).
by nonlinear least squares (Gallant 1987). This model (a Solutions were obtained by inversions from a multivariate
modified cumulative Cauchy distribution) was fbund F-test and a multivariate chi-square test. Assumptions
suited for predicting the average correlation in plots to about the distribution of estimated proportions were
within 0.03 (90 percent confidence interval) whenever the deemed satisfied for the entertained sample sizes (Fleiss
spatial correlation (#) between two separate milts of land 198 l). For the chJ-square test, the sohrtion was the n

centered at (x i, y) and (xj ,y) is a power function of satisfying (Rochon 1989):

distance pl _ ×Jl+l>i%]. We surmise this to be the spatial d)
correlation fimctiun behind the estimated average within "Z_,_._tqZ_.l-c_

4 0.90 (6)
A

plot correlation. At the strata level p was, on average,

0.968. where F is the cumulative distribution of the non-central

• ^ . chi-square distribution with v degrees ofl?eedom, non-
Total vat'lance ( _2 m Eq 1) of a strata (strata x age) centrality parameter 2_,q is the 1- ct quantile of the central
proportion was determined as the sum of within- (blue- chi-square distribution with v degrees of freedom, and C_
mial) and between-plot (beta) variances. The estimate of"
the total variance obtained from the 723 plots of size M is equal to 1 + (M - 1) • _. For strata analysis v = 16; ot

was fixed at 0.05; Z.was estimated as the expected value
was: of a chi-square statistic given the subsumed relative error

&2_ (M - l) F(SM+ 1)r(,o,u + 1) (5) on the estimated strata propoltions. Specifically:+

M B(_'a_,hM)F(SM+/_M+ Z) _ 2
= A . lgstrata .

(7)^ ^

aM'aM n. M
(o_M+/_M) (aM+ flU+ 1) ,,

where B is the complete beta integral. Each tested plot (1 n. M)NB "(1 + M(1 - SDM ( M))

size gave rise to a separate estimate of the total variance• where &is the predeflned subsumed error rate (fraction of
Provided that the beta distributions are intemally consis-

estimated proportion), n is the proportion of New
tent, we should not expect any difference in those Brunswick classified as one of the 17 strata (0.62), NB the
estimates. However, the lack of fit may give rise to biased number of SSU's in New Brunswick (determined by the
estimates. We tested the equality of the five estimates of
total variance that were available from each strata and majority rule), and M the number of SSU's in a plot of a

strata x age category with a Bartlett's test of variance given size (area); 8DM(M)is the predicted intraplot
correlation for a plot with M SSU's derived from esti-

homogeneity, The hypothesis w_s rejected 4 times (out of mates based on the model in (4) fitted to values of17) at the strata level and 24 times (out of 85) at the strata

x age level (P < 0.01). However, the marked kurtosis Dirichlet multinomial intraplot correlations as defined by
Brier. Solving the same problem but via a multivariate F-

(median 25.5 for strata and 144.1 for strata x age) of the test with an observed F-value _ (I l ) leads to n satisfcing:
data inflated the rejection rate. A multivariate variant of
the same te_styielded a chi-square of 130.6 with 459 "
degrees of freedom (P > 0.5). Hence, we surmised that WFo.v2 (k. qFvbv2,1__ ) = 0.90 (g)
the total variance estimates derived from different plot

sizes were indeed equal. Area-weighted averages were where W is the curnulative distribution function of an F

used henceforth, distribmion with v and v, degrees of freedom, k is a
constant (9), and qv is the 100(1-a) percent quantile of an

From the estimates of total variance, predictions of _ for F distribution with v_ and v_,degrees of freedom. For
various plot sizes, and repeated use of equation (1), we strata-level solutions, v_=17 and v2= n-(17-1). Thecmnputed the expected variance of strata (strata x age)

proportions for a large number of designs by varying n_n parameters v and k achieve an approximation of the non-central F-distribution with non-central parameter F to a
and M. Solutions were generated for a total 2,250 central F-distribution. Direct computation of the prob-
combinations of 150 plot sizes and 15 sample sizes. From
these results, we then computed the number of plots and ability values of the non-central F-distribution was
plot sizes that would satisfy 12 predetermined relative prohibitive for the involved parameters, v was estimated
errors of precision through linear interpolations between as:
available solutions. These calculations were completed in

a univadate and a multivariate mode. Finally, we deter- _ = _,V1+ _''_r)2

[ (9)

mined, for strata only, the number of plots (n) with M ,(V 1 + 2!_:SSU's that would be needed to declare a relative error ofx

percent significant at the 100(1-0.05) percent level of
120



A

where F is the observed F-ratio (see I I). Costs

4- F (10) Under the assumption that new photography and interpre-
--_ V1 ) tation of photos is acquired for the purpose of the national

F forest inventory, we seek the inventory design (plot size,
number of plots) with the lowest overall costs for a given

and finally, predefined relative error of estimated proportions. The
inventory costs include only design-dependent cornpo-

l_"- _t'. (Y, tolt . _1). _ (11) nents: (i) flying to all plots in New Brunswick, (ii) photo- acquisition (2 per plot) and processing, (iii) photo

interpretation of'plots consisting of a delineation of stand
boundaries and classification into strata and age _-oup,-->

where A is the n x I column vector of subsumed errors (iv) checking the photo interpretation by field visits, and
on the strata estimates (relative error times estimated (v) data processing. Table 3 lists the unit costs for each of

. _ A these components. The total cost of a design was com-proportmn), and A' denotes the transposed vector, E is

the estimated covariance matrices with subscript tot puted as the weighted sum where weights were either the
number of plots or the area of a plot depending on the unitrel_rring to the total variance-covariances (estimated as

per Landis and Koch and _ to the predicted intraplot (table 3). Note while actual costs may vary considerably
correlations and cross strata correlation predicted from depending on local circumstances, we t2vst that their

relative magnitudes have been captured. Relative values,
models (4) fitted to estimated correlation (ibid.). Drop-

not absolutes, determine the optimal design. Flying
ping the test-power simplified the above expression to distances (FD, unit: km) to visit all national forestfinding all that satisfied

W#_,._t__t)--= 0.95 inventory plots in New Brunswick were predicted from
n

the model on the next page (Eq. 12). The model was
A nnivariate approach to determine sample Size via an F-

derived from measured total travel distance required toratio statistics followed the above procedure except that
all covariance was set to zero,

Table 3. Variable and fixed cost items for photo acquisition, photo-interpretation and field
inspections.

Item Unit Cost ($) Unit Remarks

Flying 6.56 km twin engine ($1000-$2200 per hour)

Interpretation 0.10 ha strata delineation and age
determination

Field visits 80.00 plot site visits to one plot in 50
(2 people, one hour travel time
to and from plot, $20/hr.) to check

quality of interpretation

Field checks 0,12 ha check interpretation (strata, age) by
visual comparing interpretation
results to field realities,

2 people can check 50 ha in 6 hours
at $20/hour.

Fixed costs 20.00 plot photos, plot registration, GIS work
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visit alJ points on 40 di#_rent regular grids covering New where the last term in the exponential is one half the
Brunswick. The grids contained 100 to 5,000 plot residual variance &the regression. The range of the
locations. We assumed that the flying would be done airplane was set to 1,400 kin; excess flying inc|udes travel
from seven hubs serving as refueling stations (fig. 1). to and from fuel stations, Initial travel distances to

New Brunswick was, therefore, tiled into seven Voronoi dispatch the airplane to the hubs are ignored. For
cells, and travel distances for various grids were computed example, the total travel distance for a design with 500
separately for each cell and then summed to a province- plots systematically allocated on a grid is predicted to be
wide prediction model, about 7,500 km and 10,500 kan for one with 1,000 plots.

An approximate formula is provided by FD - 335 x X]n,.cFD Exp[5.9474 1+ 0.4787326. Log[n g ]
(12) RESULTS AND DISCUSSION

+ 1.0.000176141]
[ntraplot con'elation for strata proportions declined at first

rapidly and then more slowly as plot size increased (fig. 2

6 Strata 6 Strata x Age1.0 1.0

0.8 ,, 0.8 "
_%% %%%%

0.6 ",, ",, 0.6 ,, ,,

0.4 ',,,, "-,,,, 0.4 ",, ",,
0.2 " """ " "'""'-.. ""-- 0.2 "- "-

: ' ' ha i i _ ha
1 10 100 500 10 100 500

2

O'clu 0-21u

0-2

srs Strata 0-s2rs Strata x Age20. 20.

15. 15. "_"
S #

S, ¢ ¢¢J

_.a jS

10. . 10.
,a,a t'¢

,at w,a_ '_

' ha , , , ha
1 10 100 500 10 100 500

Figure Z-=Top: lntraplot correlation (3) versus plot size (ha). Full line: median. Dashed lines: upper and lower 10

pement quantiles. Bottom: Ratio of variance in cluste sampling (_S to the variance of simple random sampling
(_2 Q for various sizes (ha) of primary sampling units. Secondary sample unit = 100m_'.
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top, note the logarithmic x-axis). Increasing plot size %
from 100 m2 to 10 ha, for example, caused a decline in Strata
average within plot correlation of 0.2, whereas an increase 20 I ",
from 10 to 100 ha lowered the con'elation by aboul 0.3, a Q .
pattern consistent with a spatial first-order autocorrelation I \

process, lntraplot correlation varied among strata; figure 15 _ •
2 shows the 20 and 80 percent quantiles of the 17 strata _ %,

and 63 strata x age combinations used in this study. •

Overall, an 80 percent confidence interval would be about _-- _',;- _ 40eha
0.2 for smaller plots (< 10 ha) and shrink to about 0.1 lbr 10 \ "" -
large plots (> 200 ha). Variance-weighted ineans ]_br the _ '_ _••.•.

five plot sizes were 0.46, 0.33, 0.21, 0.16, and 0.14, _ " •'"',, __ _ lOOha
respectively. Simple means were 0.46, 0.29, O.15, O.13, 5

and O.11, while fi'equency-weighted estimates of 6 for 25ha
strata were 0.45, 0.29, O.17, O.13, and O.11, respectively.

For strata x age combinations, the decline was slightly I _ I r I lha
steeper and the width of the 80 percent confidence band %
was somewhat wider, as dictated by their slnaller propor- 1 2 3 4 5
tions and higher degree of spatial scattering. Our choice
of SSU (0.01 ha) has no effect on the above results; rather,

a different SSU would merely impact on the resolution of 40 %
results by vilntueof the discreteness ofgSU. Strata x Age

Intraplot correlation declined marginally at a rate below 1/ 35 \ \ k
M tbr a plot size increase from M to M+I, which means X

that tile variance of a sample proportion based on a fixed 30 ....

sample area increased with sample size (fig. 2 bottom). _ •',,,

Mediansamplingvariancesofstrataproportionsarising25 -,.,.....from salnpling a fixed area with square 10-ha plots, for

--sampling the same area with 100-m 2plots. Conversely, 15
100- and 500-ha plots would inflate the variance seven- 400ha
fold and tenfold. Results for individual strata varied 10 _-", _ "-,

greatly. Lower 10percent bounds were roughly 0.5 tile _'-i,_.._ 100ha
median value and the upper bound roughly 1.5 times the _ __ 25ha

median. Going to the strata x age level (fig. 2 bottom) i I I I I lha %

exaggerated parallel results by 10 to 50 percent. 1 2 3 4 5
The consequences of the tradeoffbetween plot size and
number of plots are illustrated in figure 3. For a fixed Figure 3 -- Expected relative error (%) of inventory
inventoried area (x-axis), the expected precision drops estimates of strata and strata x age areas (y-axis)

exponentially as plot size goes tip. For example, one plotted against the percentage of New Brunswick
could achieve a median error of 5 percent on a strata inventoried (x-axis). Full lines." median result

proportion by an inventory of about 1 percent of New obtained with a plot size of l, 25, I00, and 400 ha.
Brunswick with square plots of I ha. Conversely, one Dashed lines' are the corresponding 80% quantiles.
would need to inventory about 4 percent of the province
with a plot size of 25 ha to achieve the same precision, plot sizes in excess of 100 ha, the tradeoffbetween size
Insuring that most (80 percent) of the estimated strata and number of plots becomes more equitable. While
proportions satisfy the target precision would add between relationships displayed in figures 2-4 are quite general,
30,000 and 70,000 ha to the area inventoried. For a given the actual numbers and their interrelationships are unique
inveutory design, the median or 80 percent quantile to the landscapes of New Brunswick.
precision at the strata x age is 1 to 5 percentage points
lower than at the strata level. Finally, when inventory As expected, costs for designs meeting a specified target
efforts to achieve a given precision with a fixed plot size precision varied considerably. Designs with plot sizes in
are translated into necessary sample sizes, we get results the range of 70 to 130 ha for a target precision of 6 to 14
as those in figure 4. We notice a dramatic increase in the percent appear attractive (fig. 5). Smaller plots incur
minimum sample size needed to achieve, say a relative more flying costs but require less interpretation and data
error of 10 percent, when plot size goes below 80 ha. For 123



processing than larger plots. Table 4 lists the individual
n Strata mininmm cost solutions. The size of the most cost-

", effective plot increases when tile target relative precision
9000 ", is lowered. Insuring that the target precision applies to 80

4, percent of the strata instead of just the 50 percent (table 4)

7000 4. appears to lower the plot size at the strata level, while tile
"'" reverse is true at the strata x age level. The high number

of plots needed to insure that 80 percent of the relative

5000 \_, ._. errors meet the target flipped the marginal cost relations

4...._ between size and numbcrs of plots.3000 3%
_\. -........... - Precision targets can be further refined by imposing a

___f- -- threshold not to be exceeded with a probability of 100(1-1000 ............... !0% _) percent and by requesting a mininmnr probability of
15% detecting excess. These targets can be expressed as....... i _ '_ ha

average expectations in a univariate or multivariate
10 100 250 500 context. The latter exploits the eovariance between

invenmried attributes while the errors are averaged over
all strata (strata x age). Estimates of total cm,ariances
were those from the MANOVA's, and predictions of
cross-correlation were made via equation (4) adapted to a

n Strata x Age bivariate case. Table 5 presents five alternative minimum
• cost soMions, each based on a different set of probability

statenrents or test statistics. In general, achieving a
• probability of 90 percent to declare an error in excess of5000 "". the targets significant (P< 0.05) instead of one around 50

"'.......... percent would entail an increase in the area inventoried ofabout 0.3 percent. In a multivariate context, the tradeoff
""t" .... between number &plots and size of plots is less clear

3000 than in a univariate framework due to the impact of
covariance and the distribution of the test statistics. On

average, a multivariate approach (Solutions I, II, and V)
..... 10 %-. calls for less area to be inventoried than a univariate

1000 _- ......... ___--- 20% approach. The difference is most marked for low error
_--- ',30%' ' ' ha targets and decreases with increasing error tolerance.

10 100 250 500 Also, the choice of test statistics may modify the solution.
For example, the II and V solutions in table 5 are accom-

Figure 4, Number of plots (n) required to achieve a panied by identical probabilistic statements and produce
median relative error orS, 10, and 15 percent on very similar solutions in terms of the total area to inven-
inventory estimates of strata and strata x age areas as tory, yet larger plots are clearly favored by solutions based
afimction of plot size (x-axisg. Dashed lines are the on the F-test, a fact attributed to the trend for the determi-
combinations" qfplot size and number ofpIots needed nant of the inverse of the covariance matrix to increase at
to ensure that 80percent of'the results have errotw a rate below I/M when plot size is increased by one unit
less' than 5, 10, and 15percent. from M to M+l.

CONCLUSIONS

The tradeoff between the number of plots and the size of
plots to use in a national forest inventory poses a classical
dilelrmaa for those who design the inventory. The
quantitative analyses presented here cover oaly a narrow
range of issues. Ultimately, it should be the value of the
inventoried data that drives the design deoisions about plot
size and number of plots. For strata and strata x age area
estimates, it is possible that the value may be inversely
proportional to the estimate itself. In the context of
conservation and biodiversity, focus will be on rare strata.
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Figure 5.--Effect ojplot size (x-axis) on inventory costs (y-axis) when the mtmber q/'plots is chosen to ascertain a target
Onedian or the 80 pe_vent quantile) relative error on the estimate of strata (strata x age) areas. The minimum cost
solutions are indicated with gray squares.

Sampling designs under the aegis of conservation and however, that a precise formulation of these targets and
biodiversity issues are dictated by avcry different set of the level (strata or strata x age) to which they apply can

imperatives than those epitomized by this study. Until the have a dramatic impact on the total area to inventory.
value of forest inventory information has been formulated,
the best approach to settle the issue of plot size and ACKNOWLEDGMENTS
number of plots is to minimize costs for a given precision

target. Within this albeit narrow scope, a plot size in the We thank the New Brunswick Department of Natural
order of 100 to 150 ha for stratifying the landbase by Resources and Energy for making the GIS data available
strata and age categories appears attractivc when the for our study. A special thank you goes to Director R.

precision taJgets IMIin the 8 to 12percent range. Note, Dick, Forest Management Planning Section, for arranging
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Table 4. Lowest cost combinations of plot size and number of plots for a given relative error on

estimated strata (strata x age) proportions. Error rates apply to either the median

expectation or as an upper limit of 80% of the strata viz. strata x age combinations.

......... Relative error of estimate ........
6% 8% 10% 12% 14% 16%

Strata. Median

Number of plots 3777 2169 1354 921 663 508

Spacing, approx., km 4 6 7 9 10 12

Size of plots, ha 91 91 101 Ill 121 121

_r pt,% 3.9 3.6 1.9 1.5 1.2 1.0

Strata. 80%

Number of plots 11062 6900 4542 3203 2291 1766

Spacing, approx., km 3 3 4 5 6 6

Size of plots, ha 91 81 81 81 91 91

_r pl_ % 9.3 6.1 4.4 3.3 2.7 2.3

Strata x age. Median

Number of plots 6672 3863 2414 1690 1248 929

Spacing, approx., km 3 4 5 7 8 9

size of plots, ha 71 71 81 81 81 91

_r pt,% 6.5 3.8 2.7 1.9 1.4 1.2

Strata x a_e. 80%

Number of plots 12798 8550 5717 4069 3035 2270

Spacing, approx., km 2 3 4 4 5 6

Size of plots, ha 121 101 101 101 101 111

_r_,r_° % 21.3 11.9 7.9 5.7 4.2 3.5
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Table 5. Strata level multivariate F-test and Chi-square solutions to lowest cost combinations of

plot size and number of plots for a given relative error on estimates.

Solution L" Error is declared significant (P~ 0.5) at the a = 0.05 level of significance of a
type I error. Test: multivariate F-test,

Solution 11:Error is declared significant (P=0.90) at the _ = 0.05 level of significance of a
type l error. Test."multivariate F-test.

Solution III." Error is declared significant (P- 0.5) at the a"= 0,05 level of significance of a
type I error. Test." multivariate F-test with all covariances equal to zero.

Solution IV." Error is declared significant (P= 0,90) at the a: = 0.05 level of significance of

a type I error. Test." multivariate F-test with all covariances equal to zero.

Solution V: Error is declared significant (P= 0.90) at the a: = 0.05 level of significance of a
type 1 error. Test." Chi-square.

......... Relative error of estimate ..............
6% 8% 10% 12% 14% 16%

Solution I

Number of plots 915 589 394 297 200 193

Size of plots, ha 124 93 88 79 108 85

_'_pl, % 1.6 0.8 0.5 0.3 0.3 0,2

Solution II

Number of plots 1101 616 395 277 215 160

Size of plots, ha 124 138 152 164 156 192

7r r_ % 1.9 1.2 0.8 0.6 0.5 0.4

Solution III

Number of plots 2055 1173 771 580 401 302

Size of plots, ha 105 108 108 113 115 129

_" p,_% 3.0 1.7 1.1 0.9 0.6 0.5

Solution 1V

Number of plots 2494 1403 899 625 456 347

Size of plots, ha 103 111 117 123 136 147

_r _o% 3.5 2.1 1.4 1.1 0.9 0.7

Solution V

Number of plots 2233 1248 791 539 387 299

Size of plots, ha 71 76 80 87 97 94

_r_t_ % 2.2 1.3 0.9 0.6 0.5 0,4
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