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Abstract —Guided transect sampling is a two-stage sampling design in which prior
information is used to guide the field survey in the second stage. Tn the first stage,
broad strips are randomly selected and divided into grid-cells. For each cell a
covariate value 1s estimated from remote sensing data, for example. The covariate is
the basis for subsampling of a transect through the broad strip. The general idea of
guided transect samgpling can be combinad with different transect-based field
inventory methods. This paper describes guided transect sampling and provides
some results from a theoretical evaluation,

Sparse populations, for which no list exists, generally
pose substantial problems in sampling. This is the case in
forestry, such as when studying elements of importance
for biodiversity or a population of some indicator species.
The plot-based methods generally used for timber
cruising tend to give imprecise cstimates for rare abjects
since only a small area is covered and a relatively long
time is spent traveling between plots. For sparse objects,
transect-based methods like strip surveying should be
more cost-cflicient because a larger area is covered
{L4mas and Fries 1995). Line transect sampling (e.g.,
Buckland ef af. 1993) has mainly been used for assessing
wildlife populations, but is also a good altemative for
sparse inanimate objects. Lately, adaptive cluster sam-
pling (Thompson 1990, Roesch 1993) has been proposed
as an efficient method for sparse and aggregated popula-
tions. Still, inventories can be expensive and/or provide
imprecise results. '

Prior information about the population studied can be
used in many ways to enhance the precision of estimates.
Techniques such as stratification and probability propor-
tional to size (PP3) use the information for selecting the
samples, while ratio and regression estimators, for
example, use the information for estimation purposes.

This paper concerns a newly developed method (Stahl e
al. 1997) thought to increase the efficiency in transect-
based sampling methods when the object of interest is
sparse and geographically scattered. The method, guided
transect sampling (GTS), is a two-stage probability
sampling design. In the first stage, wide strips are laid
out, and in the second stage, the subsampling of a transect
inside the wide strip is guided by prior information, as in
the form of remote sensing data. The aim of this paper is
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to give a general description of GTS and to provide some
preliminary results regarding its efficiency.

THE METHOD

An overview of the method is provided in figure 1. In the
target arca delineated (left in fig. 1), broad strips are first
randomly laid out. The strips are partitioned into grid-
cells of some suitable size, e.p., 20 x 20 m. For each such
cell, a covariate value is assessed prior to sampling. For
example, the covariate could be the cstimated volume of
deciduous trees if the population studied is known to
prefer deciduous trees to conifers in mixed stands. Such
volume estimates can be obtained from satellite imagery
or acrial photos (e.g., Tomppoe 1986, Nilsson 1997).

Secondly, grid-cells are subsampled along a survey line
across each first-stage strip (right in fig. 1), The
subsampling is based on the covariate values in cach grid-
cell. The general idea of GTS can be combined with
different kinds of transect-based inventory methods, such
as strip surveying, line transect sampling, and adaptive
cluster sampling with a strip as the initial unit. However,
in the theoretical description of the method in this article,
GTS is supposed to be combined with a strip survey

Figure 1.--The general outline of GTS. A first-stage
sampling of wide strips (left) is followed by a second-
stage guided subsampling of a transect within each
strip (right).




approximated as a survey of the entire grid-cells selected.
In reatity, the method also relies on the use of GPS,
differential in real time, to guide the survey or along the
predetermined transects.

Strategies for Guidance

Different strategies can be used for selecting the second-
stage transect. Some straightforward possibilities are:

1. Random walk with transitions allowed only to
neighboring cells in the next grid-cell colurmn (fig.
2a). The decision about which cell to enter is made
PPS to the neighboring cells’ covariate values.

2. As strategy I, but allowing the surveyor to step from
a particular cell to any of the grid-cells in front. The
second-stage transect will no longer be connected
(fig. 2b).

3. Random simulation of entire transects through the
first-stage strip without considering the covariate
data. Transitions are allowed only to neighboring
cells in the next grid-cell column as in strategy 1.
However, here, there is an equal probability of
transition to each of the neighboring cells since no
covariate data arc considered at this moment. Many
transects are simulated, and for each transect the sum
of covariate values in all grid-cells passed by that
transect (the J-value) is calculated. Finally, one
transect is selected PPS to this sum of covariates (fig.
2c).

The choice of subsampling strategy will affect the
simplicity of applying the method in the fleld as well as
the precision of GTS. Theoretically, strategy 2 should be
most efficient since cells with large covariate values
always have a high probability of being selected. The
simplicity of surveying along a continuous transect will,
however, be lost. Strategy | gives connected transcets,
but it might be inefficient because interesting arcas
sometimes will have a very low probability of being
selected. Strategy 3 could be regarded as a compromise
between strategy 1 and 2. It will lead to connected
transects, and the inefficicncy that might occur with
strategy 1 is reduced if enough transects are simulated.

ESTIMATION

Attention will first be given to conditional estimation
within a primary unit. The general principle is to use the
Horvitz-Thompson (HT) estimator (e.g., Cochran 1977),
by which a first-stage strip total, ¥, is unbiasedly esti-

mated as:
- LY
=3 0

Here, y._is the characteristic of interest in the jth grid-cell
sampled in first-stage strip i, (m; the probability of
including this grid-cell in the sample, and /m, the number
of grid-cells sampled in first-stage strip i.

To arrive at an estimator for the entire area under study,
the method for selecting the first-stage strips must be
considered. If this selection ts made by simple random
sampling, assuming all primary units, to have equal size,
an estimator of the population total, ¥, is obtained as:

v o= lﬁiﬁ @)

with 4 being the total area of the compartment, a the arca
ofa ﬁrst—s:tageﬁstrip, 7 the number of first-stage strips
sampled, and ¥, the estimator of the population. (sub-)total
within first-stage strip /.

Inclusion Probabilities

The probabilities of inclusion of grid-cells will vary
depending on what strategy is used tor guiding the
subsampling. Below, the derivation of inclusion prob-
abilities will be described for the three cases previously
discussed. For simplicity, a rectangular forest with m
columns is assumed. All first-stage strips are assumed to
have a width of r rows and to extend across the entire area
under study, parallel with two of the sides in the rectangle.
All derivations arc made within a selected first-stage strip.
In this section, notations for grid-cells are two-dimen-
sional, indicating the row and the column.

Strategy 1: The grid-cell to enter the strip is selected PPS
among all possible cells in column 1. The probability of
inclusion of the grid-cell in row j, column 1, is then:

Wil 3)

= s
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with X, being the covariate value of the jth cell in the first
column and r the number of rows in the first-stage strip.
Note that all the x-values must be larger than zero for the
strategy to be theoretically sound. If a grid-cell’s
covariate is zero initially, some small number must be
added before the formula is applied.

J"Eﬂ

[.ooking next at the probabilities of inclusion for grid-
cells in column 2, these depend on the probabilities of
inclusion of ceils in the first columnn. The following
recursive formuta can be used from column 2 onwards, to
the end of the strip:

X, @
Ty = Z Tie-ny " O
lefd, szk
S'EI,?[
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Figure 2.—Different strategies for guiding the subsampling. In (a) transition is allowed only to neighboring cells, in (b)
transition is allowed to any onward cell, and in (¢) entive transects are simulared. In (1) and (b), the probabilities of
transition to the onward cells (the p-values) are determined from the covariate values (x-values) in the cells in the
onward column, here denoted i. In (c), an entive transect is selected PPS to the sum (Q-values) of covariates in grid-
cells passed by the transect.
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[n this formula, (2, is the set of neighbor cells in the
previous column (k-7) of the grid-cell in row j, column k.
The set usually consists of three cells, although at the
upper and lower boundary of a first-stage strip, it consists
of only two cells. Moreover, ¥, is the set of neighbors in
front of the grid-ceil in row [, column &7, providing the
possible transitions from that particular grid-cell onwards.
Generally, this set also consists of three cells except at the
borders of the first-stage strip. '

Strategy 2 In this case the probability of inclusion of'a
grid-cell depends only on the covariate values of the grid-
cells in that particular column. The probabilities are

always given by v
Tk

i X ®
1=

As in strategy 1, all x-values must be larger than zero,
otherwise, a small number must be added to all the x-
values before applying the formula.

Ty =

Strategy 3: Here, entire transects are first simulated
without considering the covariate information. Next,
covariate data for grid-cells passed by the transect are
summed, resulting in a value , for the entire transect /.
QOut of the large number of transects simulated, one is
selected PPS to the Q-valucs. The probability of inclusion
of a particular grid-cell (conditioned on the realization of

transects) is:
2.0.

s ©)

2.0

fel
Here, 8 is the set of transects that pass the grid-cell in row
J, column &, and L is the set of all transects simulated. For
this formula to be theoretically sound, every grid-cell
must be passed by at least one transect.

Ty

Precision of Estimates
The precision, in terms of the variance, can be derived

from the general formula for conditional variances (e.g.,
Cochran 1977):

Var(Y ) = Var [E( m] +E[Var( |S)] 7

A . .
where ¥, is the estimator of the population total and S the
set of first-stage strips in the sample.

Under the assumption of simple random sampling,

without replacement, of n first-stage strips among ¥
possible, formula (7) can be further elaborated to:

Var(¥, o) (%};}ﬁ[(?{ _"n)Z(Y Yy +ZVm(Y)}
(8)

Here, N is the total number of first-stage strips, and the
rightmost variance terms are those from the second stage
guided transect inventories. These are calculated with the
formula for the variance of an HT estimator (¢.g.,
Cochran {977):

var(fy - 3 L
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where 7z and 7, now is the inclusion probability of grid-
cell j and k, respectively, m, the joint inclusion probability
of the cells j and &, M, the number of grid-cells in first-
stage unit £, and y, the quantity of interest in the jth cell.
The joint probabﬂmcs of inclusion are calculated accord-
ing to the same principles that are used for calculating the
individual probabilities of inclusion. Focus is set on on¢
grid-cell at the time, and the probability that this particu-
lar cell oceurs in the sample simultaneously with another
is calculated.

COMPARISON OF GTS VERSUS
STRIP SURYEYING

To give an indication of the efficiency of GTS and the
performance of the different strategies for subsampling,
comparisons were made with a traditional strip survey in
two fictitious ~forests.” The example was designed to
resemble inventories of some scarce specics in restricted
areas of coniferous forests with patches of deciduous
trees. Many red-listed species depend on deciduous trees
{Berg et al. 1993), and the covariate was considered to be
the volume of deciduous trees assessed from aerial photos
or satellite imagery. The parameter of interest could then
be the population total of some quantity, such as the total
biomass of the species of interest. The two forests had
different levels of scarcity of the covariate and the species
of interest.

Simulation of Fictitious Forests

The two forests (Forest | and Forest 1I) consisted of
rectangular matrices of 30 by 25 grid-cells. The quantity
of the covariate and variable of interest was simulated in
four steps:

], First, each grid-cell was independently assigned
either a covariate value equal to zero, or a covariate
value greater than zero. The proportion of grid-cells
with a nonzero covariate was 0.3 in Forest [ and 0.1
in Forest 1L

2. For grid-cells with a covariate value greater than
zero, the value was independently simulated from a
normal distribution with mean 50 and standard
deviation 35, truncated to prevent values below zero.
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3. The probability of occurrence of the species of
interest in grid-cell /, Pj, was determined with the
following (slightly modificd) logistic model:

b exp(e + f-x;)+ P* (10)
! I +expla+f-x;)

where x, is the value of the covariate in grid-cell j, #* the
probability of occurrence of the species of interest when
the covariate value is zero (0.03 in Forest [ and 0.01 in
Forest 1), ¢ and B parameters chosen to make PJ. close to
P* when the value of the covariate is close to zero and P.i
near | when the covariate is above 100 (a=-3, 3=0.01}.
A uniform random number was generated, and if the
random number was smatler than PJ, the species of
interest occurred in grid-cetl /.

4.  For cells with occurrence of the species of interest,
the biomass of the species. v, was modeled as:

V=YX R E X+ (an

o

where x, is the value of the covariate in grid-cell j, y a
scaling constant (y =0.2), &, a normally distributed random
variable (¢=0, 0°=0.02), and &, a Jog-normally distributed
random variable (=0, o°=1), added to assign a substantial
random component to grid-cells where the value of the
covariate was low.

Finally, a small constant was added to all grid-cells to
give grid-cells with a covariate equal to zero an inclusion
prebability farger than zero.

Both forests were produced in 10 replicates to avoid
conclusions based on extreme patterns in single outcomes.
Examples of the two forest types are shown in figure 3.
The mean valucs of the population total in the 10 repli-
cates were 3164.3 (Forest 1) and 1122.8 (Forest 11),
respectivety.

Inventory Design
In this theoretical setup, it was assumed that entire grid-

cells were selected and that the width of the strip or
transect was equal to the size of the grid-cells so that

Z}@a % !

(D)

Figure 3 —Examples of the two simulated forests used in the study. Colored squares indicate grid-cells with a nonzero
covariate. The darker the color, the higher the value of the covariate. The crosses indicate presence of the species

of interest in a grid-cell.
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selected grid-cells were entirely surveyed. Considering
this setup and the small forests used, there is a finite
number of possible samples of strips and primary units
that makes it possible to analytically calculate the
estimators’ true variances. No simulations are thus
involved in the comparison of the methods’ efficiency,
only in generating the forests.

For GTS, variances were calculated for a design in which
one first-stage strip was sclected with simple random
sampling. Within the first-stage strip, a transect was
subsampled using each of the three strategies for guidance
earlier described. For each possible first-stage strip,
inclusion probabilities and joint inclusion probabilities
were calculated for each grid-cell and each pair of grid-
cells using formudas (3-6). Then, the variance of the
estimator was calculated using formulas (8-9). Two
different widths for the first-stage strips were tested, 5 and
10 rows of grid-cells, respectively. For the traditional
strip survey, variances were calculated for a design where
one strip was selected with simple random sampling. The
width of the strip was one grid-cell, and thus equal
numbers of grid-cells were sampled with both GTS and
the standard strip survey. The variance for the estimator
was calculated as:

(12)
2 2

A WI—*MNf(K(ST) -,)

Var( mr) =
dgr ) BNg N =173

where )'}W is the estimator of the population total, 4 the
area of the forest, ag, the area of the strip, N, the number
of possible strips, # the number of strips qampied ¥ sr the
total in the ith strip, and ¥, the average of strip totals.

Results
Results are shown i figure 4 as:

_ FVarg(4,) ) (13)
VGFST( 101)

where Var,.. and Var_ are the mean values of variances
obtained with GTS and the standard strip survey, respec-

tively, in each of the 10 replicates of the two forest types.

As suspected, strategy 2 was always most efficient in
terms of statistical efficiency. Since this strategy leads to
disconnected transects and, consequently, time spent
walking without observing eventual objects, the strategy
will probably be less cost-efficient. A possible improve-
ment would be to allow transitions between rows only
each 5" or 10" column. For the two strategies leading to
commnecied transects, strategy 3 seems to be the most
reliable. The risk of poor efficiency using strategy 1 i3
especially evident using a first-stage strip with a width of
10 rows in Forest I. An improvement of strategy 1 would
be to look several columns ahead, not just one, when
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T — —Strip survey
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Figure 4 —Comparison of guided transect sampling versus a standard stvip survey, shown as the ratio between the
varignee of guided ransect sampling and the variance of the strip survey. Results are shown for three different
strategies of subsampling in two different fovest types (I-1I) and with two different widths of first-stage strips (5 and

10 rows of grid-cells).
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Integrated Tools Proceeding:
determining which transition to make. Both strategy 1
and strategy 3 scem to be relatively more efficient when
the covariate and object of interest is less common.

DISCUSSION

This small study showed that GTS could improve the

efficiency in a traditional strip survey for sampling sparse .

populations. However, the efficiency depends on the
refationship between the variable of interest and the
covariate, and when this relationship is expected to be
poor, the method’s potential is limited. Moreover, no
costs were considered in this study, and although the same
number of grid-cells was sampled using both GTS and
strip surveying, the cost of performing GTS can generally
be expected to be higher. Also, the availability and
precision of the GPS guidance must be considered since
deviations from the sclected transects will affect the
precision of the method.

The basic method presented can be developed and
adjusted in many ways. The three strategies used for the
second-stage guidance in this study are just some straight-
forward alternatives from a larger number of possibilities.
Some improvements to the strategies developed for this
study have already been discussed. Another more
complicated, yet interesting, alternative would be to find
an optimal strategy considering costs for entering differ-
ent cells, and then for a given total cost, search for the
transect giving the lowest variance, using some kind of
optimizing routine.

In this study, GTS was combined with a strip survey,
approximated as a survey of entire grid-cells selected. In
practice, it would be desirable to survey strips along
continuous lines. Then, only parts of grid-cells will be
surveyed when changing rows in the grid-cell system, and
mclusion probabilities will also have to be modified.
Other interesting possibilities would be to combine GTS
with line transcet sampling or adaptive cluster sampling.
This, however, would require further theoretical develop-
ment. For objects or species that for some reason are
difficult to survey using line-based methods, GTS couid
be combined with a sparse sample plot inventory.

Another possible way to improve the method would be to
use the covariate data not only for selecting transects, but
also for selecting the entire first-stage strips with PPS, and
for estimation purposes.
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