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Abstract._uided transect sampling is a two-stage sampling design in which prior
information is used to guide the field survey in the second stage. In the first stage,
broad strips are randomly selected and divided into grid-cells. For each cell a
covariate value is estimated from remote sensing data, for example. The covariate is
the basis for subsampling of a transect through the broad strip. The general idea of
guided transect sampling can be combined witl_ different transect-based field
inventory methods. This paper describes guided transect sampling and provides
some results from a theoretical evaluation.

Sparse populations, for which no list exists, generally to give a general description of GTS and to provide some
pose substantial problems in sampling. This is the case in preliminary results regarding its efficiency.
forestry, such as when studying elements of importance
for biodiversity or a population of some indicator species. THE METHOD
The plot-based methods generally used fur timber
cruising tend to give imprecise estimates for rare objects Au overview of the method is provided in figure 1. in the
since only a small area is covered and a relatively long target area delineated (left in fig. I), broad strips are first
time is spent traveling between plots. For sparse objects, randomly laid out. The strips arc partitioned into grid-
transect-based methods like strip surveying should be cells of stone suitable size, e.g., 20 x 20 m. For each such
more cost-efficient because a larger area is covered cell, a covariate value is assessed prior to sampling. For
(L/imgts and Fries 1995). Line transect sampling (e.g., example, the covariatc could be the estimated volume of
Buckland et al. 1993) has mainly been used for assessing deciduous trees if the population studied is known to
wildlife populations, but is also a good alternative for prefer deciduous trees to conifers in mixed stands. Such

sparse inanimate objects. Lately, adaptive cluster sam- volume estimates can be obtained from satellite imagery
piing (Thompson 1990, Roesch 1993) has been proposed or aerial photos (e.g., Tomppo 1986, Nilsson 1997).
as an efficient method for sparse and aggregated popula-

tions. Still, inventories can be expensive and/or provide Secondly, grid-cells are subsampled along a survey line
imprecise results, across each first-stage strip (right in fig. 1). The

subsampling is based on the covariate values in each grid-

Prior information about the population studied can be cell. The general idea of GTS can be combined with
used in many ways to enhance the precision of estimates, different kinds of transect-based inventor3, methods, such
Techniques such as stratification and probability propor- as strip surveying, line transect sampling, and adaptive
tional to size (PPS) use the information for selecting the cluster sampling with a strip as the initial unit. However,
samples, while ratio and regression estimators, for in the theoretical description of the method in this article,
example, use the information for estimation purposes. GTS is supposed to be combined with a strip survey

This paper concerns a newly developed method (Stfihl et
al. 1997) thought to increase the efficiency in transect-
based sampling methods when the object of interest is f
sparse and geographically scattered. The method, guided /
trmlsect sampling (GTS), is a two-stage probability
sampling design. In the first stage, wide strips are laid
out, and in the second stage, the subsampling of a transect

inside the wide strip is guided by prior infoml_ation, as in f .....
the form of remote sensing data. The aim of this paper is

.... J
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approximated as a survey of the entire grid-cells selected. Here, y_ is the characteristic of interest in thejth grid-cell
in reality, the method also relies on the use of GPS, sampled in first-stage strip i, (_j the probability of
differential in real time, to guide the survey or along the including this grid-cell in the sample, and m_the number

predeten'nined transects, of grid ceils sampled in first-stage strip i.

Strategies for Guidance To arrive at an estimator for the entire area under study,
the method for selecting the first-stage strips nmst be

Different strategies can be used for selecting the second- considered. If this selection is made by simple random

stage transect. Some straightfolnvard possibilities are: sampling, assuming all primary unitsto have equal size,
an estimator of the population total, Yo,, is obtained as:

1. Random walk with transitions allowed only to

neighboring cells in the next grid-cell column (fig. _,r - 1 A _ _ (2)
2a). The decision about which cell to enter is made n a T_
PPS to the neighboring cells' covariate values.

with A being the total area of the compartment, a the area

2. As strategy 1, but allowing the surveyor to step from of a first-stagestrip, n the number of first-stage strips
a particular cell to any of the grid-cells in front. The sampled, and Y the estimator of the population (sub-)total
second-stage transect will no longer be connected within first-stage strip i.
(fig. 2b).

Inclusion Probabilities

3. Random simulation of entire transects through the

first-stage strip without considering the covariate The probabilities of inclusion of grid-cells will vary
data. Transitions are allowed only to neighboring depending on what strategy is used tbr guiding the
cells in the next grid-cell column as in strategy 1. subsampling. Below, the derivation of inclusion prob-
However, here, there is an equal probability of abilities will be described for the three cases previously
transition to each of the neighboring cells since no discussed. For simplicity, a rectangular forest with m
covariate data arc considered at this moment. Many columns is assumed. All first-stage strips are assumed to
transects are simulated, and for each transect the sum have a width of r rows and to extend across the entire area
of cuvariate values in all grid-cells passed by that under study, parallel with two of the sides in the rectangle.
transect (the Q-value) is calculated. Finally, one A11derivations are made within a selected first-stage strip.
transect is selected PPS to this sum of covariates (fig. In this section, notations for grid-cells are two-dimen-
2c). sional, indicating the row and the column.

The choice of subsampling strategy will affect the Strategy 1: The grid-cell to enter the strip is selected PPS
simplicity of applying the method in the field as well as among all possible cells in column 1. The probability of

the precision of GTS. Theoretically, strategy 2 should be inclusion of the grid-cell in ruwj, cohlmn 1, is then:
most efficient since cells with Imge covariate values

xj_ (3)always have a high probability of being selected. The 7cj_ - r

simplicity of surveying along a continuous transect will, _7'
xil

however, be lost. Strategy 1 gives connected transects, _=)
but it might be inefficient because interesting areas
smnetimes will have a very low probability of being with x being the covariate va ue ofthejth ce in the first

Jl . * .

selected. Strategy 3 could be regarded as a colnpromise colulnn and r the number of rows m the hrst-stage strip.
between strategy 1 and 2. It will lead to connected Note that all the x-values must be larger than zero for the
transects, and the inefficiency that might occur with strategy to be theoretically sound, ffa grid-cell's
strategy 1 is reduced if enough transecls are simulated, covariate is zero initially, some small number must be

added before the formula is applied.
ESTIMATION

Looking next at the probabilities of inclusion for grid-

Attention will first be given to conditional estimation ceils in column 2, these depend on the probabilities of
within a primary unit. The general principle is to use the inclusion of cells in the first column. The following
Horvitz-Thompson (HT) estimator (e.g., Cochran 1977), recursive formula can be osed from column 2 onwards, to

by which a first-stage strip total, Y_,is unbiasedly esti- the end of the strip:

matedas: / _ 1

,,, (4)

=Z (1) = Z ,>
j=l ]_'_j lef_k I *k-
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Figure2._D(/ferentstrawgiesfor guidingthesubsampling,in (a)transitionisallowedonlytoneighboringcells,in (b)
Wansition is allowed to any onwaM cell, and in (c) entire transects are simulated= In (a) and (b) the probabilities of

transition to the onward cells (thep-values) are determined from the eovariate values (x-valued) in the cells in the

onward cohtmn, here denoted i. In (c), an entire transect is selected PPS to the sun* (Q-values) of eovariates in grid-

eells passed by the transect.
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In this formula, .(2k._is the set of neighbor cells in the llere, N is the total number of first-stage strips, and the
previous column (k-l) of the grid-cell in row j, column k. rightmost variance terms are those from the second stage
The set usually consists of three cells, although at the guided transect inventories. These are calculated with the

upper and lower boundary of a first-stage strip, it consists formula for the variance of an HT estimator (e.g.,
of only two cells. Moreover, 'P_is the set of neighbors in Cochran 1977):
front of the grid-cell in row I, column k-l, providing the

possible transitions from that particular grid-cell onwards. Vat(9) (I. -- 2c1) '_¢' '_¢_= y_ + - _r,_k)),>,k
Generally, this set also consists of three cells except at the j_ 2"i j _k,j _jrck
borders of the first-stage strip.

(9)
Strategy 2: In this case the probability of inclusion of a

grid-cell depends only on the covariate values of the grid where zr and lrunow is the inclusion probability of grid-
cells in that particular column. The probabilities are cellj and k, respectively, _g the joint inclusion probability
always given by: of the cellsj and k, M_the number of grid-cells in first-

_ x/k stage unit i, and yj the quantity of interest in thejth cell.
r

_jk Z X_k (5) The joint probabilities of inclusion are calculated accord-ing to the same principles that are used for calculating the
/ I individual probabilities of inclusion. Focus is set on one

As in strategy 1, all x-values must bc larger than zero; grid-cell at the time, and the probability that this particu-
otherwise, a small number must be added to all the x- lar cell occurs in the sample simultaneously with another
values belbre applying the formula, is calculated.

Strategy 3: Here, entire transects are first simulated COMPARISON OF GTS VERSUS
without considering the covariate inlbrmation. Next, STRIP SURVEYING

covariate data for grid-cells passed by the transect are
smmned, resulting in a value Q_for the entire transect 1. To give an indication of the efficiency of Gig and the
Out of the large number of transects simulated, one is performance of the different strategies tbr subsampling,
selected PPS to the Q-values. The probability of inclusion cmnparisons were made with a traditional strip stuwey in
of a particular grid-cell (conditioned on the realization of two fictitious "forests." The example was designed to
transects) is: resemble inventories of some scarce species in restricted

Z Q, areas of coniferous forests with patches of deciduous
_s (6) trees. Many red listed species depend on deciduous trees

_jk - Z QJ (Berg et al. 1993), and the covariate was considered to be
/d. the volmne of deciduous trees assessed from aerial photos

Here, S is the set of transects that pass the grid-cell in row or satellite imagery. The parameter of interest could then
/, column k and L is the set of all transects simulated. For be the population total of some quantity, such as the total
this formula to be theoretically sound, every grid-cell biomass of the species of interest. The two forests had

must be passed by at least one transect, different levels of scarcity of the covariate and the species
of interest.

Precision of Estimates
Simulation of lqctitious Forests

The precision, in terms of the variance, can be derived
from the general formula for conditional variances (e.g., The two forests (Forest I and Forest 11)consisted of
Cochran 1977): rectangular raatrices of 50 by 25 grid-cells. The quantity

of the covariate and variable of interest was simulated in

= + (7) foursteps:
1. First, each grid-cell was independently assigned

^ either a covariate value equal to zero, or a covariate
where Y,o,is the estimator of the population total and S the value greater than zero. The proportion of grid-cells
set of first-stage strips in the sample, with a nonzero covariate was 0.3 in Forest I and 0.1

in Forest II.
Under the assmnption of simple random sampling,
without replacement, of n first-stage strips among N 2. For grid-cells with a covariate value greater than

possible, fm'mula (7) can be further elaborated to: zero, the value was independently simulated from a

-_ ,v ,v _ normal distribution with mean 50 and standard
Var(t,,,)=(A_ I_--[(N-n_z(Y_-Y)2 +__Var(Y,)_ doviation35, truncatedtopreventvaluesbelowzero.

\a) nN}\N-1),.I i.i J
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3. The probability of occulxence of the species of where xj is the value of the covariate in grid-cell j, ), a
interest in grid-cell j, Pi' was determined with the scaling constant (7 =0.2), zj a nonnally distributed random

following (slightly modi fled) logistic model: variable (/x=0, o-s=0.02), and 6j a log-normally distributed
random variable (,u=0, oe=l), added to assign a substantial

exp(a + ft. xt) + P * random component to grid-cells where the value of the
(i 0) covariate was low.

I + exp(a _-_- x/)

where x is the value of the covariatc in grid-cell j, P* the Finally, a small constant was added to all grid-cells toJ give grid-cells with a covariate equal to zero an inclusion
probability of occurrence of the species of interest when

probability larger than zero.the covariate value is zero (0.03 in Forest I and 0.01 m

Forest lI), c_and [3 parameters chosen to make P close to
J Both forests were produced in 10 replicates to avoidP* when the value of the covariate is close to zero and P

near 1 when/he covariate is above 100 (o.=-5, jg=O.O1 )) conclusions based on extreme patterns in single outcomes.
Examples of the two forest types are shown in figure 3.

A uniform random number was generated, and if the The mean values of the population total in the l 0 repli-
random number was smaller than ]37the species of cares were 3164.3 (Forest 1) and 1122.8 (Forest 11),
interest occurred in grid-cell./, respectively.

4. For cells with occurrence of the species of interest,

the biomass of the species, 35, was modeled as: Inventory Design

In this theoretical setup, it was assmned that entire grid-

Yj = 7 .x/+ 6j •Xj .4- (_j (1 1) cells were selected and that the width of the strip or
transect was eqnal to the size of the grid-cells so that

X _ x
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Figure 3.--Examples of the two simulated forests used in the study. Colored square_" indicate grid-cells with a nonzero

covariate. The darker the color, the higher the value of the covariate, The crosses indicatepresence of the species
of interest in a grid-cell.
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selected grid-cells were entirely surveyed. Considering where Y is the estimator of the population total, A the
this setup and the small forests used, there is a finite area of the forest, asr the area of the strip, Nsv the number

number of possible samples of strips and primary units of possible strips, n the number of strips sampled, Y_(sr_the
that makes it possible to analytically calculate the total in the ith strip, and Ys_the average of strip totals.
estimators' true variances. No simulations are thus

involved in the comparison of the methods' efficiency, Results
only ill generating the forests.

Results are shown in figure 4 as:

For GTS, variances were calculated lbr a design in which Var_rs(Y,,o,) (13)one first-stage strip was selected with simple random R .......

sampling. Within tile first stage strip, a transect was Varsr(_o t )
subsampled using each of the three strategies for guidance

earlier described. For each possible first-stage strip, where Varc;rsand Varsr are the mean values of variances
inclusion probabilities and joint inclusion probabilities obtained with GTS and the standard strip survey, respec-
were calculated for each grid-cell and each pair of grid- tivcly, in each of the 10 replicates of the two forest types.
cells using formulas (3-6). Then, the variance of the
estimator was calculated using formulas (8-9). Two As suspected, strategy 2 was always most efficient in
different widths for the first-stage strips were tested, 5 and terms of statistical efficiency. Since this strategy leads to
10 rows of grid-cells, respectively. For the traditional disconnected transects and, consequently, time spent

strip SUlwey,variances were calculated for a design where walking without observing eventual objects, the strategy
one strip was selected with simple random sampling. The will probably be less cost-efficient. A possible improve-
width of the strip was one grid-cell, and thus equal ment would be to allow transitions between rows only

numbers of grid-cells were sampled with both GTS and each 5'_or 10'hcolumn. For the two strategies leading to
the standard strip survey. The variance for the estimator connected transects, strategy 3 seems to be the most
was calculated as: reliable. The risk of poor efficiency using strategy 1 is

especially evident using a first-stage strip with a width of
(12) 10 rows in Forest I. An improvement of strategy 1 would

Var(Y't)= (Af1Nsr-t_'vsra2nNs.r Nat _Z(Y_(sr)i=l -Ysr)2 bet°l°°k several columns ahead' not just °me'when

1.8 _ Strategy 1

O [] Strategy 21_6
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1.4 1
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Figure 4._Somparison of guided O'anseet sampling versus a standard so'ip survey, shown as"the ratio between the
variance of guided transect sampling and the variance of the strip survey. Results are shown for three different
strategies of subsampling in two d(]ferent forest types (I-II) and with two diff&ent widths offirst-stage strips (,5 and
10 tows of grid-cells).

163
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