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15.1 INTRODUCTION

Woody tissues are produced by each of the approximately 44,000 species of
trees, shrubs, and woody vines found worldwide -(Hickin, 1975). Most
woody tissues are tougher, drier, and nutritionally poorer than leaf tissue
when considered as a substrate for insect growth and development (Slansky
and Scriber, 1985). Nevertheless, many insects have evolved to live and feed
in woody environments; some species inhabit the relatively soft and nutri-
tionally rich inner bark (phloem), whereas others are found in the harder and
more nutrient-deficient sapwood and heartwood. Other species are xylomy-
cetophagous, feeding primarily on symbiotic fungi that grow within their
galleries. Certain wood feeders inhabit living trees, some occur in recently
dead trees or decaying logs, and others live within structural timbers and
furniture.

This chapter reviews the evidence that the major woody tissues, by their
chemical and physical nature, provide wood-feeding insects with distinct
and often relatively harsh environments and that, in response to selection
pressures imposed by woody environments, these insects have evolved spe-
cific morphological, physiological, and behavioral adaptations. Our cover-

age is limited to the principal families of phloem, sapwood, and heartwood -

feeders listed in Table 15.1. Additional information relevant to wood feeders
is presented by Waller and La Fage in Chapter 16 (termites), Kukor and

Martin in Chapter 26 (fungus-feeding arthropods), and Anderson and Cargill-

in Chapter 30 (aquatic detrmvorous msects)

5.2 FOOD CHARACTERISTICS

15.2.1 Anotomy of the Woody Stem

Trees are generally cIaSS|ﬁed as hardwoods (angnospcrms—e g, oak ash,
.and -maple) or softwoods (gymnosperms or conifers—e.g., pine, spruce, and

15.2 Food Characteristics
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Table 15.1. Principal Families of Coleoptera, Hymenoptera, and Lepidoptera That
Inhabit the Inner Bark (IB), Sapwood (SW), and Heartwood (HW) of Woody
Angiosperms (A) and Gymnosperms (G)

Approx. No.

. Principal Condition of
Order __ofs_;:eci- tissues woody material
Family World N. Am. Hosts utilized* commonly inhabited®
Coleoptera
Anobiidae 911 250 A,G SW,HW Dead, lumber
Bostrichidae 455 62 A IB, SW Live, dead, lumber
Buprestidae 11,391 662 A.G IB,SW,HW Live, dead
Cerambycidae 20,000 1,200 A,G 1B, SW, HW Live, dead, lumber
Lyctidae 65 19 A Sw Lumber
Platypodidae 1,000 7 A,G SW,HW Live, dead
Scolytidae 6,000 566 A,G 1B, SW,HW Live, dead
Hymenoptera .
Siricidae 85 18 A,G SW,HW Live, dead
Xiphydriidae 82 6 A Sw Dead
Lepidoptera
Cossidae 650 45 A IB. SW, HW Live
Sesiidae 1,063 115 A,G IB,SW Live

Sources: von Dalla Torre (1923), Linsley (1959), Anderson (1960), Arnett (1971), Baker (1972),
Hickin (1975), Smith (1976; 1979), Furniss and Carolin (1977), Heppner and Duckworth (1981),
S. L. Wood (1982), Hodges et al. (1983).

“ Most wood feeders consume the woody tissues that they inhabit; however, some scolytids and
probably all platypodids, siricids, and-xiphydriids are xylomycetophagous (see text).

% Live = living and healthy, weakened, or dying trees; dead = recently killed or felled trees to
well-decayed logs; lumber = partially or fully seasoned timber in any stage of processing.

fir). Proceeding inwardly through a transverse section of a ‘‘typical’’ tree
(Fig. 15.1) is first the protective outer bark, followed by the relatively thin,
food-conducting inner bark. Next is the cambium, the meristematic sheath
of cells that produces phloem to the outside and xylem to the inside. The
xylem (wood) comprises the bulk of the woody tissues and is divided into
sapwood, the outer, water-conducting, and usually lighter-colored portion;
and heartwood, the inner, physiologically inactive, and usually darker por-
tion (Kramer and Kozlowski, 1979) At the center of the Stem is the rela-
tively soft pith. ’

Woody plants add consecuuve layers (growth rings) of xylem and phloem
to the stem throughout their lives; xylem ‘accumulates over time, whereas

. old phloem is eventually sloughed off. Within a single xylem growth ring, a

transition occurs from relatively thin-walled cells produced early in the
growing season (earlywood) to thick-walled cells produced later (lalewood)

'(Flg 15.1; Zlmmermann and Brown, 1971).
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and may contain high levels of tannins, phenolics, and alkaloids (Chang,
1954; Jensen et al., 1963). ‘
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Among the stem tissues, inner bark (phloem) ranks second behind cam-

bium in nutritional quality (Table 15.2). It is relatively soft, comprising
mostly living, thin-walled cells. In addition to having relatively high levels of
nutrients and water, phloem may contain tannins and resins (Howard, 1971).
Photosynthate transport usually occurs in the thin layer of phloem (0.2-1.0
mm thick) nearest the cambium; hence, phloem nutrients are most concen-
trated in these cells (Kramer and Kozlowski, 1979).
" Because the cambium is an active meristematic tissue and is almost en-
tirely living, it has the highest water content and nutrient levels of any
woody tissue (Table 15.2). Although the cambium is the most nutritious
tissue for wood feeders, it comprises the smallest fraction of all the major
stem tissues (Kramer and Kozlowski, 1979). .

Sapwood is a less nutritious environment for wood feeders than phloem
(Table 15.2). The walls of most xylem cells are heavily lignified (woody),
thus making the tissue hard and dense. About 10% of the sapwood is living
parenchyma; the remainder consists mostly of dead, open-ended, water-
conducting cells. Resins may occur in high concentrations in sapwood, espe-
cially in conifers (Hillis, 1962). Sapwood mineral levels are highest in the
~ outer (newest) growth rings (Basham and Cowling, 1976) but are lower than
those of the cambium and phloem (Table 15.2). Only a small portion of the
sapwood actively conducts water: the outermost one or two growth rings in
ring—porous hardwoods (e.g., ash, chestnut, and oak), and several of the
outermost rings in diffuse-porous hardwoods (e.g., aspen, birch, and maple)
and conifers (Kozlowski and Winget, 1963; Kramer and Kozlowski, 1979).
These patterns of water conduction explain in part why ring—porous hard-
woods are generally more vulnerable to wilt diseases (e.g., chestnut blight,
Dutch elm disease, and oak wilt; Kramer and Kozlowski, 1979) and girdling
insects (e.g., the buprestid Agrilus bilineatus on oaks; Haack and Benjamin,
1982), than diffuse~porous hardwoods or conifers.

Although heartwood is similar to sapwood in density, it is nutritionally
poorer (Table 15.2). Because heartwood lacks living cells, N levels are typi:
cally very low; values exceeding 0.3% (dw) usually reflect the presence of
alkaloids (Cowling and Merrill, 1966). Many secondary compounds are de-
posited in the heartwood, including resins, polyphenols (tannins, stilbenes,
glycosides, and lignans), tropolones (phenollike substances with fungicidal
and bactericidal properties), and alkaloids (Hillis, 1962; Shigo and Hillis,
1973). Heartwood water content is generally less than that of sapwood in
conifers, but théy are similar in hardwoods (Peck, 1953; Skaar, 1972). Con-
centrations of P and K are usually lower in heartwood than sapwood,
whereas the reverse is generally true for Ca, Mg, Mn, and Zn; Cu and Fe
levels are generally low in all woody tissues (Basham and Cowling, 1976).

Pith is mostly parenchyma and usually occurs as a narrow cylinder along
the central axis of branches, stems, and roots (Esau,"1977). In twigs and

‘'young branches, pith cells are mostly living and function in food storage, but
they are usually dead in older branches and stems, especially in regions

152 OO Lharaciensrics o

where heartwood formation has occurred. In heartwood. the central region
(near the pith) has higher N levels than the outer portions (Merrill and
Cowling, 1966). Although nutritional data for the pith are mostly lacking, its
nutritional quality would probably be higher than sapwood but lower than
phloem. More information concerning chemistry, morphology, and physiol-
ogy of woody tissues is presented in Wise and Jahn (1952), Hillis (1962),
Browning (1963), Zimmermann and Brown (1971), Esau (1977), and Kramer
and Kozlowski (1979).

Little is known about the pH of woody tissues. In general, phloem sap is
alkaline (pH 7-8) whereas xylem sap is acidic (pH 4-6; Kramer and
Kozlowski, 1979; Raven, 1983). McNamara et al. (1970) reported that heart-
wood is more acidic than sapwood in oaks, but in birch, beech, maple,
hemlock, and pine they are of similar pH. They observed no consistent
seasonal trends in xylem pH but did report that sapwood becomes more
acidic as it dries.

Few studies have been conducted on the composition of gases in woody
tissues (Scarth and Gibbs, 1930; Chase, 1934). Chase (1934) reported that (1)
CO, levels are higher and O, levels are lower in wood than in the atmo-
sphere, (2) wood O, levels are lowest in summer and highest in winter with
the converse being true for CO;, (3) O; levels are higher in ring—porous wood
than in diffuse-porous or conifer wood, and (4) O; levels are higher in
sapwood than heartwood. Reports are lacking on the air composition within
wood-feeder galleries; however, it is probably similar to the atmosphere,
because most galleries originate near or contact the bark surface.

In summary, the woody environment poses many physical and nutritional
obstacles to wood feeders. Among these are (1) restriction of the physiologi-
cally active (and thus most nutritious) stem tissues to a very narrow band of
phloem and sapwood on either side of the cambium, (2) protection of this
nutrient-rich band using dense, high-fiber, nutrient-poor, and allelochemical-
rich tissues (bark and wood), and (3) construction of cell walls using com-
plex, highly digestion-resistant polymers.

15.2.3 Sources of Variation in Woody-Tissue Quality

15.2.3.1 Seasonal Variation. Most of the woody tissués show seasonal fluc-
tuations in nutrient levels, especially the phloem and sapwood of temperate-
zone woody plants (Kramer and Kozlowski, 1979). In these, levels of starch
(Jones and Bradlee, 1933; Siminovitch et al., 1953), N (Cameron and Apple-
man, 1933; Tromp, 1970), and lipid (Gdumann, 1935; Arrhenius, 1942) gener-

“ally peak during autumn or winter, decline sharply in spring, when rapid

growth resumes, and remain low or slowly increase during summer. Concen-
trations of the above nutrients are thus relatively low during the summer,
when warmer temperatures favor wood-feeder activity. Sapwood water con-

_ tent (Clark and Gibbs, 1957) and mineral levels (Bollard, 1958) are generally

highest in sbring and lowest in winter; however, most phloem minerals reach
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maximal levels in autumn and minimal levels in spring (White et al., 1972)
Nutrient fluctuations are more pronounced in phloem than sapwood and in
deciduous hardwoods than evergreen conifers (Kramer and Kozlowski
1979). )

15.2.3.2 Inter- and Intraspecific Variation. Almost every measurable tree
characteristic varies among species as well as within a species with respect
to tree age, distance from the pith, height along the stem, and position within
a growth ring (Kramer and Kozlowski, 1979; Panshin and de Zeeuw, 1980).
In sapwood, nutrient concentrations decline from the cambium to the heat-
wood (Cameron and Appleman, 1933; Murneek, 1942), probably reflecting
the diminishing number of living parenchyma cells (Merrill and Cowling,
1966). Within a single growth ring of sapwood, water content and nutrient
levels are greater in earlywood than latewood (Merrill and Cowling, 1966).
In many trees, sapwood water content increases from the base of stems
upward (Ovington, 1956). Drought stress (Mattson and Haack, 1987) and soil
fertility (Stark, 1965; White et al., 1972) influence a tree’s chemical composi-
tion as well as its ability to resist attack by wood-feeding insects.

15.2.3.3 Wood Seasoning. The most obvious result of seasoning timber is a
reduction in water content. Wood holds about 20-23% water (fw) at fiber
saturation, which theoretically is when cell walls are saturated but cell cavi-
ties are devoid of water (Panshin and de Zeeuw, 1980). In the United States,
water content of lumber is about 11% after commercial drying but varies
between 11 and 13% when stored outdoors under cover (Skaar, 1972; Pan-
shin and de Zeeuw, 1980). Under heated conditions during winter, water
content of interior woodwork can drop to 4-7% (Peck, 1955; Panshin and de
Zeeuw, 1980). As wood dries, lipid content declines (Browning and Bublitz,
1953; Mutton, 1962) whereas soluble carbohydrates and N move with the
water stream and accumulate near the outer surfaces (King et al., 1974;
Long, 1978).

15.2.3.4 Decay. Logs, lumber, and dead portions of living trees are subject
to decay caused by fungi and bacteria, which enzymatically degrade cell wall
polymers (Kirk, 1973). Wood decay usually occurs when the water content
is above fiber saturation, a common situation where wood comes in contact
with soil (Panshin and de Zeeuw, 1980). As decay progresses, wood porosity
and moisture-holding capacity increase whereas wood density and structural
strength decline (Campbell and Bryant, 1940; Yoneda, 1975; Panshin and de
Zeeuw, 1980). Close to 90% of the initial woody mass of temperate-zone
trees is lost in the first 75 years following death (Lambert et al., 1980;
MacMiIIan. 1981), but less than 10 years is required for bole wood to decay
in the humid tropics (Lang and Knight, 1979). As bole wood of balsam fir
decays, N, P, and H,O levels increase whereas density, Ca, Mg, and K
levels decrease (Lambert et al., 1980). '
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15.2.4 Predictability and Persistence of Woody Tissues

Perennial growth and the long lives of woody plants contribute to making
woody tissues seemingly predictable and persistent resources. However,
because wood feeders require host plants of a particular species, age, and
physiological condition (Sections 15.3.4 and 15.3.5), the actual distribution
of usable resources becomes spatially and temporally unpredictable (Bea-
ver, 1984). For example, Scolytus ventralis colonizes only about 4%, and
Dendroctonus ponderosae 66%, of the trees they attack (Raffa and Berry-
man, 1980). Such resource patchiness may have selected for widespread
insect dispersal via flight and development of complex chemical communica-

" tion systems (Section 15.3.5).

Once trees die, the lignified nature of most cell walls allows for their
lengthy persistence. However, the degree of persistence for any woody
tissue tends to be inversely correlated with its nutritional quality. Phloem
and cambium deteriorate rapidly through drying, decay, and exploitation by
wood feeders, whereas outer bark and xylem may persist for years (Graham,
1925; Savely, 1939; Wallace, 1953; Hamilton, 1978; Beaver, 1984).

15.3 INSECT ADAPTATIONS TO WOODY ENVIRONMENTS

15.3.1 Morphological and Anatomical Adaptations

Adaptations to the woody environment are seen in the body form, integu-
ment, mouthparts, and digestive tract of wood feeders. Body form is very
similar among those insects in which both the adults and larvae actively
tunnel (most Anobiidae, Bostrichidae, Lyctidae, Platypodidae, and Scolyti-

" dae). Adults are generally cylindrical, are more or less squat, and have a

strongly rounded off prothorax (Browne, 1961; Cymorek, 1968). This shape
is well designed for boring in wood, because these beetles, and scolytids in
particular, fold their legs and walk on protibial spines while rotating along
their longitudinal axes (Schmitz, 1972; Gouger et al., 1975). Larvae of the
above families are mostly scarabeiform; however, first-instar larvae of some
anobiids, bostrichids, and lyctids are elongate, with these usually originating
from eggs deposited inside xylem cells (Cymorek, 1968).

It is primarily the larval stage that actively tunnels in the Buprestidae,
Cerambycidae, and wood-feeding Hymenoptera and Lepidoptera. Larvae of
these groups are elongate, but their cross-sectional shape varies with the
host tissue inhabited. For example, phloem-feeding cerambycids are dorso-
ventrally flattened, xylem feeders are cylindrical, and some species that -
develop first in phloem and later in sapwood are first flattened and then

cylindrical (Craighead, 1923). Similarly, phloem-feeding buprestids are dor-

soventrally compressed whereas xylem-feeding Buprestidae, Hymenoptera,
"and Lepidoptera are cylindrical (Cymorek, 1968).
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In general, wood feeders range in adult body size from small (many anobi-
ids, bostrichids, lyctids, platypodids, and scolytids) to large (many bupres-
tids, cerambycids, and wood-feeding Hymenoptera and Lepidoptera). How-
ever, within a specific group, body size tends to increase with decreasing
food quality (Table 15.3). For example, xylem-feeding buprestids, ceramby-
cids, and sesiids tend to be larger on average than their phloem-feeding
counterparts. In the scolytid tribe Micracini, body size is distinctly related to
the tissue consumed, with average elytral length (from S. L. Wood, 1982)
being 1.3 for 75 phloem feeders, 1.7 for 20 pith feeders, and 2.1 mm for 65
xylem feeders (i.e., those that are actually xylophagous, not xylomyce-
tophagous). Such evidence supports our earlier hypothesis that the nutri-
tional quality of pith is intermediate between phloem and sapwood (Section
15.2.2). This trend in wood-feeder body size may have evolved to allow
better digestion of poor-quality foods as evidenced by longer and more com-
plex digestive systems in xylem than in phloem feeders (see below).

The legs of many wood-feeding larvae are reduced in size and number.
For example, the legs of anobiids, bostrichids, and lyctids are very small and
are used primarily in feeding and frass removal (Cymorek, 1968). Buprestid,
platypodid, scolytid, and some cerambycid larvae are completely legless.
Among cerambycid larvae, species with legs typically tunnel in decayed
wood whereas legless species usually feed in solid wood (Craighead, 1923).

Features of the larval integument vary with the woody tissue inhabited.
Cerambycid larvae inhabiting living trees possess much pubescence, which
probably aids in gripping wet, sappy mines; those in decayed wood generally
have a thick, glabrous integument, and those in dry wood have a few stiff
setae and a thin integument (Craighead, 1923). A thin integument may
allow wood feeders in dry environments to absorb water from their sur-
roundings; this would be adaptive, because the water content of their frass is
generally higher than the ingested wood (Mishra and Singh, 1977). Produc-
tion of frass that is more moist than the wood inhabited may indicate a poor
ability to conserve water or may serve to humidify the gallery to the benefit
of associated external microorganisms. Placement and angle of body spines
and setae determine in great part how and in what directions larvae can
move within their galleries (Mamaev and Semenova 1961; Cymorek, 1968).

Larvae and adults of wood-feeding insects have well-developed
mouthparts and associated musculature (Dorsey, 1943). Cerambycid larvae
inhabiting dry wood have short, gougelike mandibles (and produce short,
flaky wood chips), whereas those inhabiting living trees possess slender,
toothlike mandibles (and produce ﬂbrous shreds of wood; Craighead, 1923;
Solomon, 1977a). Siricid larvae can efﬁcnently cut and tear. wood, because
their mandibles are toothed along the distal edge (Cymorek, 1968).

The digestive tract of wood feeders varies according to the woody tissue
consumed. For example, many anobiids and cerambycids that inhabit dry
wood or heartwood possess a grinding gizzard (Mansour and Mansour-Bek,
1934; Cymorek, 1968; Chararas, 1979) that fragments ingested wood, thus

Table 15.3. Average Body Length and Developmental (Generation) Time of Families of
Wood-Feeding Insects That Inhabit Various Stem Tissues of Temperate-Zone Trees

Body length Developmental
Principal No. (mm)* time (yr)
Order feeding of (Range of
Family zone(s) spp. Mean means) Mean (Range) Ref.¢
Coleoptera
Anobiidae SW, HW 6 5 4-7) 1.8 (1-3) bfim
Bostrichidae = SW 9 7 (3-16) 1.7 (0.5-3) abim
Buprestidae 1B 6 9 (8-12) 1.2 (1-2) bcilm
IB, SW 10 10 (6-18) 1.9 (1-2) abcim
SW, HW 10 19 (12-30) 3.0 (2-4) abfim
Cerambycidae OB 2 19 (17-20) 23 (2-3) bd
IB 11 14 (6-25) 1.1 (1-2) abdhim
1B, SW 24 17 (11-30) 1.6 (1-2) abdhij
kmnsvxz
1B, SW, HW 6 20 (14-24) 2.2 (1-3) abhit
SW, HW 3 27 (15-37) 3.1 (2-4) bdfhmo
HW 20 30 (14-53) 3.6 (2-5) bdhimru
Lyctidae SwW 7 4 (3-5) 1.0 (0.5-2) abim
Platypodidaed SW, HW 4 5 (4-6) 1.0 (0.5-2) bi
Scolytidae 1B 32 4 -7 1.0  (0.5-2) abi
SW, HW¢ 10 3 (2-4) 0.6 (0.3-1) abi
Hymenoptera?
Siricidae SW, HW 9 25 (16-44) 1.8 (1-3) bigwy
Xiphydriidae ~ SW 8 15 (11=17) 1.2 (1-2) befim
Lepidoptera .
Cossidae IB, SW, HW 5 47 (37-60) 2.9 (2-4) bfim
Sesiidae IB 11 18 (13-27) 1.0 (1-2) bgip
IB, SW 10 29 (22-40) 2.3 (2-4) bgip

« OB, outer bark; IB, inner bark; SW, sapwood; HW, heartwood.

b Values represent adult body length for Coleoptera and Hymenoptera, and larval (last instar) body
length for Lepidoptera.

« References: a. Anderson (1960): b, Baker (1972); c. Carlson and Knight (1969): d. Craighead (1923);
e. Deyrup (1984): f, Dominik and Starzyk (1983); g. Duckworth and Eichlin (1978): h. Duffy (1953): i.
Furniss and Carolin (1977): j. Galford (1983): k. Gardiner (1960); 1. Haack and Benjamin (1982) and
Haack et al. (1983); m. Hickin (1975): n. Hosking and Bain (1977): 0. Kithne (1975): p. MacKay (1968):
q. Morgan (1968): r. Nord et al. (1972a): s. Nord et al. (1972b): 1. Solomon (1968): u. Solomon (1972,
1974): v. Solomon (1977b): w. Spradbery and Kirk (1978): x. Starzyk (I977) y. Stillwell (1966): z.
Wickman and Seminoff (1968).

“ The platypodids. SW/HW scolyllds (.lmbrosld beetles). and Hymenoplera are xylomycetophagous.

459



460 Nuritional Ecology of Wood-Feeding Coleoptera, Lepidoptera and Hymenopterg
exposing more surface area to digestive enzymes. The sapwood-feedmg
lyctids and bostrichids, and certain phloem- and sapwood-feeding ceramby-
cids, lack such a gizzard. The digestive tract, especially the midgut, is very
long in certain dry wood- and heartwood-inhabiting cerambycids (Semenova
and Danilevskii, 1977; Chararas, 1981), which probably allows for more
efficient food breakdown and absorption.

15.3.2 Digestive Enzymes

Wood feeders enzymatically degrade sugars, starch, and structural polysac-
charides to varying degrees (Table 15.4). In general, heartwood feeders de-
grade more classes of structural polysaccharides than sapwood feeders, and
these in turn degrade more than phloem feeders. Sapwood-feeding bos-
trichids and lyctids are exceptions; they lack the ability to degrade hemicel-
lulose and cellulose and must therefore derive nourishment from sapwood
parenchyma. Some xylem-feeding cerambycids apparently do not digest
sugars (Parkin, 1940), compounds that are often lacking in their food. Cer-
tain scolytids of the Micracini are apparently true sapwood feeders (Browne,
1961; S. L. Wood, 1982), but it is not known if they degrade cellulose, a
compound that phloem-feeding scolytids do not degrade (Table 15.4; Cour-
tois and Chararas, 1966). Lignin digestion has been recorded in a few xylem
feeders (Seifert, 1962; Becker, 1977; Mishra and Singh, 1978; Mishra, 1983;
Mishra et al., 1985), with certain heartwood-feeding cerambycids degrading
up to 38% of the lignin present. The digestive enzymes of wood feeders may
be produced by the insect itself or by gut microorganisms, or they may be
acquired from ingested fungi (Chararas, 1979; Breznak, 1982; Chararas et
al., 1983; Kukor and Martin, 1983; Martin, 1983; Mishra and Sen-Sarma,
1986).

The great variation in the numbers of species belonging to the families
listed in Table 15.1 may reflect the abilities of wood feeders to degrade
structural polysaccharides (Table 15.4). For example, cerambycids degrade
all classes of structural polysaccharides and comprise the largest family,
whereas the sapwood-feeding lyctids, which do not degrade cell walls, have
" the fewest members worldwide.

Most wood feeders are associated with internal and external symbionts
(Francke—Grosmann, 1967; Breznak, 1982). Certain anobiids have gut-
dwelling bacteria and yeasts that contribute vitamins and sterols and that fix
atmospheric N .(Becker, 1977). This latter process may explain how in stud-
ies by Baker et al. (1970) and Mishra et al. (1985), xylem feeders accumu-
lated more N than was present in the mgested wood. Fixation of atmo-

spheric N by hindgut bacteria is known to occur in termites (Breznak, 1982)
and a wood-feedmg cockroach (Breznak et al., 1974). Certain gut symbionts

“are involved in pheromone synthesis in scolytids (Sectton 15.3.5). External '

fungal symbionts of certain bark beetles influence phloem quality by increas-
ing levels of total N (Hodges et al., 1968) and free fatty acnd (Clark and

L emen
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Richmond, 1977) and by lowering the reducing sugar content (Barras and
Hodges, 1969). Certain scolytids require their associated fungi for successful
brood development (Barras, 1973; Norris, 1976) and for overcoming host-
tree resistance (Berryman, 1972; Whitney, 1982; Lorio and Hodges, 1985).

15.3.3 Quantitative Food Utilization

Little is known about quantitative food utilization by wood feeders, with the
available data representing primarily immature Coleoptera (Tables 15.4 and
15.5). This paucity of information reflects the inherent difficulties in such
studies. For example, larvae must be introduced into wood and later located
and extracted for weighing, frass (feces plus wood shavings) must be col-
lected and separated, and estimates of the volume or weight of wood con-
sumed must be made. In many studies, frass is collected only once, often
weeks or months after feeding was initiated, and analyzed without separat-
ing feces from uningested wood shavings. Values of approximate digestibil-
ity (AD) for various wood components have often been calculated on the
assumption that lignin is not degraded and can thus be used as an internal
standard; however, several wood feeders are known to degrade lignin (Sec-
tion 15.3.2). For these and other reasons, the food utilization efficiency
values presented in Tables 15.4 and 15.5 should be viewed with some cau-
tion.

Wood feeders, especially xylem feeders, exhibit low relative growth rates
(RGRs), as indicated by the few available values (Table 15.5) and by the long
generation times of many species (Section 15.3.6). Contributing to this slow
growth are low values for AD and efficiency of conversion of digested food
(ECD). Because of the dense nature of xylem, low relative consumption
rates (RCRs) are expected, but the data are too limited to conclude this
(Table 15.5). Nitrogen utilization efficiencies also appear to be relatively low
(Tables 15.4 and 15.5). Some AD values lie within the moderate range of 30—

. 50%, indicating that digestive adaptations of some wood feeders (Section

15.3.2) can result in relatively efficient digestion and assimilation. In general,
AD values of wood-feeding termites are greater than those of wood-feeding
Coleoptera (Becker, 1977). Mamaev (1961) presented several exceptionally

" high values for the efficiency of conversion of ingested food (ECI) for certain

wood-feeding Coleoptera (exceeding 30%; Table 15.5); these imply excep-
tionally high AD and/or ECD values, but these were not calculated. Because
these ECI values appear uncharactenstlcally htgh for wood-feedtng Coleop-

. tera, they should be confirmed.:

15.3.4 Host Range -

Wood feeders range from monophagous (one specnes or genus of host plants)
to polyphagous (hosts from unrelated families). In general monophagy is

most common among wood feeders that inhabit hvmg woody plants (early-
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Tal . itati T .
ln'::;"lsv’iﬁ(?u:’w:::;;; ‘s’l‘::sU""la"O" by Immature Wood-Feeding Insects That Variations exist in the types of woody tissues utilized by temperate and
tropical wood feeders. For example, most cerambycids inhabit dead wood in
Or::r ; . Nutritional index ~__temperate regions, whereas most are live-stem borers in the tropics; the
;‘p,ciics ar;ra'lsysz“:da AR RR AD Bop s latter pattern may allow for avoidance of tropical termites, which quickly
Pr— 1 Retutilize dead wood (!..msley, 1959). Among scolytids and platypodids, most
Anobiidae are phloem feeder§ in temperate areas (80-90%; Beaver, 1979; S. L. Wood,
Anobium punctatum SW 0004 0.1 251 1982) and dry tropical deciduous forests (58%; Atkinson and Equihua, 1986),
Xyletinus peltatus SwW 56.5 4 whereas most are xylomycetophagous in the humid tropics (66-76%; Bea-
B‘g‘::fba:'w _ ™ ver, 1979). The prolonged dry season in tropical deciduous forests may
Lanpra m”a"';m"" | :g 34.5 g select against the xylomycetophagous habit by inhibiting growth of the fun-
Buprestis geometrica Wood 3843 2.3 ¢ gal symbionts; xylomycetophages constituted only 14% of the scolytid and
Cerambycidae h  platypodid fauna in the study by Atkinson and Equihua (1986).
Z:;i.mus'ver;rmfdus IB 6.7-286 ¢
tonotus detritus
fl:miu;nf;st‘iwlalum :g 3;; :
_ Arhopalus ferus IB 0.048 24.1 : d 15.3.5 Host Location and Colonization
SW 0.011 '
.y ) SW (N) 26.8 : Wood feeders locate their hosts by random search or by responding to
H-:’y‘;;‘:z;":{:g"‘-: g&j 20-49 : bkl chemical cues that.are eit_her host- (primary attraction) or insect-produced
SW (© ;f ;‘;-‘: :g : (secondary attraction; Birch, 1984). Ethanol, produced by trees under
’ SW (N) 136 1176 160 [ stressed conditions (Moegk, 1970; Crawford and Baines, 10977), and certain
;'ﬂxolus‘marabilis sw 4.5 g monoterpenes serve as primary attractants for some scolytids (Moeck et al.,
’;;:;::‘:‘:; ::;i‘;:;;';omis }Si\%’/ HW 20-50 i 1981) and other wood-feeding Coleoptera (Linsley, 1959; Becker, 1977;
Scolytidac 37-51 hi Montgomery and Wargo, 1983). In scolytids that initially locate hosts
Hylesinus fraxini IB 17.5 c through random search (e.g., Ips paraconfusus; Moeck et al., 1981), host
Scolytus carini IB 12.3 g acceptance apparently occurs only after some feeding (Elkinton and Wood,
f,:.";’:"_f:i::"'-"'“’ 1B 333 g 1980). Ethanol and specific products of lignin degradation serve as feeding
) s sparsus IB (energy) 46.4 ¢ stimulants (Norris and Baker, 1969; Meyer and Norris, 1974), whereas cer-

: :{%é’"‘ef bark; SW, sapwood; HW, heartwood. tain bark chemicals act as repellents or feeding deterrents for scolytids
mate d ’e'afl;Y? growth rate (mg/mg/day); RCR, relative consumption rate (mg/mg/day); AD. approxi (Norris, 1977); a feeding deterrent for one scolytid species is often a phago-
Sioneo fl?:;ll :le:;);’ ;Z'Z);(;)CD. efficiency of conversion of digested food (%); ECI, efficiency of conver stimulant to another .
es 0). : . . . . . 3
Little is known about mechanisms of pheromone production in wood

¢ References: a, Baker et al. (1970): b, Cannon and Robinson (1981); i

o + D, ); ¢, Hopf (1938); d. Hosking am . . . . i .
iH:;gh:son ( ;957_9); ¢. Hosking and Knight (1976); f, Ikeda (1979); g, Mamaev (1961); h, Mishra (1983) feeders otper than comfer-mfestmg scq}ytxds and, to a lesser degreg, in some
+ Vishra and Singh (1978); j, Mishra et al. (1985); k, Rasmussen (1967); 1, Seifert (1962); m, William: C€rambycids (Iwabuchi, 1982) and sesiids (Neal, 1979). Many conifer-infest-

(977, : ing scolytids utilize host monoterpenes to synthesize aggregation phero-
, mones (Borden, 1982; D. L. Wood, 1982). Pheromone production occurs in

oo . ‘ the hindgut region by means of simple oxidation (Borden, 1982; Birch, 1984)
istlil:;eds:::,ntliz:ﬁ?:)(l‘:ttf:ﬁiz polyphagy is "_'051 prevalent among those inhab-  5pq maygorigiﬁally h);ve served as : detoxiﬁcatio(n mechanism (White et al.,
been shown for ceramby cig:S'(%r;;?she:;S‘ l?;;;erl’.] 9?4)' This pattern has  1980. Francke and Vité, 1983). Gut-dwelling bacteria and yeasts are involved
(Stark, 1982; S. L. Wood 1982) andgbu restids (ba m; ey,d1959f.) » scolytids i pheromone synthesis in certain scolytids.(Borden, 1982; Leufvén et al.,
1972; Furniss and Carolin _]977; Apparr;ntl habitz‘:’ on f?fa, rom Baker. * 19g4), Host quality may influence pheromone production. For example, in
quires higher levels of spe’cializa‘ti on that le z:,d o mo '°"h° wmﬁ trees rhe- the scolytid Ips calligraphus, pheromone production'is lower when feeding -
lack of active defense systems in dead wood tiSsucnop agy, w lereas It € in thin (less resinous) than in thick (more resinous) phloem, with the resul-
tion for dietary specialization i S May exert less selec-  tant attack density being less in thin'phloem (Vité et al., 1972). Bark beetle
) pheromones are used interspecifically by their parasites, predators. and as-



466 Nurritionol Ecology of Wood-Feeding Coleoprera, Lepidoptera and Hymenoprerq
§ociated wood-feeding invertebrates (Borden, 1982; D. L. Wood 1982: Bil}
ings and Cameron, 1984; Birch, 1984). ’ T

Phloqm feeders are usually the first to inhabit dying and recently dead
trees, with sapwood feeders being the next group to colonize (Graham, 1925-
Savely, 1939; Mamaev, 1961; Hamilton, 1978; Haack et al., 1983), Appar.’
ently because of selection for rapid colonization of the nutrient-rich but
ephemeral phloem and cambium, phloem feeders, and especially'scolytids

- have evolved effective flight and chemical communication abilities. The re:
lease of pheromones by bark beetles that infest living conifers leads to fur-
ther ?ggregation and subsequent mass attack of the host; mass attack is often
required to overcome host resistance (Berryman, 1972; Raffa and Berryman
1983; Payne and Coulson, 1985). Some bark beetles produce antiaggregatior;
p.h.eromqnes to curtail mass attack, thereby minimizing intraspecific compe-
t!tlop (l}n‘ch, 1984). Rapid colonization by the scolytid Dendroctonus fronta-
lis is important in reducing subsequent interspecific competition with
phloem-feeding cerambycids (Coulson et al., 1980). Resource partitioning
of:ter_l occurs when two or more wood feeders share the same woody tissue
within a host species (Hespenheide, 1976; Paine et al., 1981; Beaver, 1984).
Chal.lges in the wood-feeder community structure occur during forest suc-
:::ssu;n (Stax("zyk and \g’i;kowski, 1981) as well as within individual logs as

€y decay (1.e., wood feeders are replac ;
1955; Moraes 1o, placed by fungus feeders; Wallace,

Lumber, although abundant and persistent, may be unsuitable to wood
feeders as a result of low nutrient and water content. This restricted occur-
:’Fncelof sx.l:ltfable t:]umber may explain why certain anobiids and lyctids con-
1nue to reinfest the same wooden struct i
1972: ik, 1975, ure for several generations (Baker,

15.3.6 Voltinism Patterns

Within a family of wood feeders, developmental times are inversely related

to nt}tﬁﬁonal quality of the woody tissue inhabited (Table 15.3). For exam-
ple, in temperate areas, phloem-feeding buprestids and cerambycids gener- .

ally developin 1 year, sapwood feeders in 2 years, and heartwood feeders in
3 or more. Tl{le shorter developmental times of phloem feeders probably
(r;ﬂgtl:t ](;)zt)hizt)m;re favorable physical and nutritional qualities of phloem
{1able 15.2), (2) that phloem feeders are typically smaller than xylem feeders
(Table 15.3), and (3) the less n
xylem (Section 15.2.4). .

Considering that fungus is more nutritious than woad (Martin and Kukor,
1984): the fungal diet of -ambrosia beetles, siricids, and xiphydriids may
explain why they have shorter generation times than those xylem-feeding

anobiids, buprestids, and cerambycids that inhabit similar tissues (SW, SW/ .

HW; Table 15.3). Similarly, the inability of wood-feeding Lepidoptera (at
least in the Cossidae) to degrade most structural polysaccharides (Table

persistent nature of phloem compared with -
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15.4) may explain their longer generation times compared with the ‘‘enzyme-
rich” buprestids and cerambycids that inhabit similar tissues (IB/SW, 1B/

SW/HW; Table 15.3).

15.4 INSECT RESPONSES TO ENVIRONMENTAL CHANGES

15.4.1 Nutritional Quality of Wood

15.4.1.1 Effects on General Performance. Wood-feeder performance has
been studied in relation to wood N, starch, and water content. Larval growth
and survival are positively correlated with wood N content (Baker et al.,
1970; Becker, 1977; Hosking and Hutcheson, 1979). The anobiid Anobium
punctatum and the cerambycid Hylotrupes bajulus can develop in wood
having as little as 0.03% N (dw) (Becker, 1963; Bletchly, 1966). Larval
survival and growth rate of A. punctatum (Becker, 1977), H. bajulus (White,
1962; Becker, 1977), and the lyctid Lyctus brunneus (Cymorek, 1966) in-
crease when living in N-enriched wood. -

The branch-girdling behavior of adult Onicerdes females (Cerambycidae)
improves the nutritional quality of their progeny’s food (Forcella, 1982).
Females girdle small branches of deciduous hardwood trees during late sum-
mer and early autumn and then oviposit in the girdled portions. Later, the

* girdled branches fall to the ground, where the larvae develop. Prior to leaf

abscission in autumn, many nutrients (e.g., 33—-66% of leaf N) are removed
from the leaves and stored in the branches, trunk, and roots of deciduous
trees (Kramer and Kozlowski, 1979). If girdling is timed properly, these
translocated nutrients are trapped above the girdle and thereby made avail-
able to the developing larvae. Forcella (1982) reported a positive correlation
between larval survival and N content of girdled branches. This girdling
behavior has not evolved among conifer-inhabiting cerambycids, possibly
because there is no autumn flush of translocated nutrients from needles to
branches (Kramer and Kozlowski, 1979).

Starch content of wood is especially important to lyctids and bostrichids,
which are unable to utilize structural polysaccharides as a carbon source
(Table 15.4; Wilson, 1933; Parkin, 1936, 1940). This inability may explain
why lyctids and bostrichids do not utilize heartwood, a tissue lacking in
starch and sugars (Table 15.2). The minimal starch content in which Lyctus
species develop is about 1.5% (Becker, 1977). Adult females of certain Lyc-
tus species gnaw on wood prior to oviposition, possibly testing its nutritional

- suitability (Parkin, 1936; Cymorek and Schmidt, 1976). ‘ :

Adult and larval performance of the phloem-feeding scolytid Pi-
tyophthorus lautus is greatly influenced by host (sumac) quality (Kirkendall,
1983). Adult female residence time (within a gallery system), egg density
(eggs/unit length of gallery), and larval survival are all positively correlated
with phloem N and total available carbohydrate levels. :
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Larval development and survival of wood feeders are also i
wood moisture content. Most xylem feeders require a wood0 tlr?:ilslfunrieg oy
tent above fiber saturation (>20% fw), which typically occurs in dying treon.
freshly cut logs, and stumps (Becker, 1977). A few xylem feeders especia‘lzls‘
structural !umber pests, can develop in wood with only 6-7% 'water (fi !
(i.e., certain anobiids, bostrichids, cerambycids, and lyctids; Parkin 194‘?3
Ggrl?erg. 1957; Cymorek, 1966; Becker, 1977; Vongkaluang’ et al 1982:
}Mlhams. 1983). The phloem-feeding buprestid Agrilus bilineatus t;"picall ,
mfes.t§ stressed, but living, oak trees (Haack, 1985a) and is apparently ve y
sensitive to changes in host moisture content. Haack and Benjamin ( 19'81(’)y
noted that A. bilineatus larvae fail to complete development when infested)
trees are felled (and thus allowed to dry) early during larval development but
that they can devek?p when felling occurs late in larval development
The seasqnal variation in egg density (eggs/unit length of gallery) \./alues

of the scolyt{d Ips calligraphus (Fig. 15.2) may reflect nutritional and physi-
cal changes in its host. In this study (Haack et al., 1984b), the outermost
sapwood (which females etch regardless of phloem thickness) consisted of
earlywood xylem cells during summer and latewood xylenr during autumn
Beca}use earlywood cells are thin-walled, less dense, and higher in water anci
nutrient levgls than latewood (Paul, 1939; Merrill and Cowling, 1966; Ifju
1969; Panshin and de Zeeuw, 1980), females tunneling in sumn;er m;neriai
are probably better nourished, expend less energy, and thus have more net
nutrients to allocate to reproduction.

6} 300 "
SUMMER 30 FALL

st 25°| |
- i 30°
e 4¢ 20°|
3 _ 25°;
o I o
o 3t _ ! 20°,

2t ]

’ i i A A A 1 4 n ! -

12 3 4 I 2 3 4

PHLOEM THICKNESS (M)

zge s‘l :1 :;.rkssfb::';‘mlty :‘eg.gs/cn! of gallery) of the scolytid Ips calligraphus at three tempera-
Xylom v Sabs o ls las hpme with ‘phloem thlckn.esses ranging from 0.5 t0 4.0 mm: earlywood
"as outens outer lhs In the current:year growth ring in the summer study, whereas latewood

; " € autumn study. (From, and equations presented in, Haack et al.. .1984b:
reprinted with Pcrm:ssnon from The Canadian Entomologist, Vol. 116, p. 628.) ‘ o
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15.4.1.2 Effects on Developmental Time. As a result of protracted develop-
ment, some wood feeders may be the longest-lived of all insects. Records
exist indicating that certain buprestids and cerambycids have required 10-50
years to complete development (Duffy, 1953; Smith, 1962). Such situations
usually occur when trees or logs are infested prior to milling, with the subse-
quent lumber being of such poor nutritional quality that protracted develop-
ment results. The extent of wood decay also influences developmental time;
generation time of the anobiid Xestobium rufovillosum is over 9 years in
sound wood but only 1-2 years in well-decayed wood (Fisher, 1940). The
ability of wood feeders to complete development under unfavorable condi-
tions (instead of dying) may be one reason why intraspecific variation in
adult size is greater in wood feeders than in free-living insects (Section
15.4.1.3; Andersen and Nilssen, 1983). Xylem feeders apparently have the
“luxury’’ of developing over many years because of the persistent nature of
wood and because they have fewer parasites and predators than free-living
insects (Fiske, 1908). :

The extent to which long developmental times (i.e., apparently slow
RGRs) are an evolved characteristic of wood feeders rather than merely
resulting from the physical and nutritional constraints of the woody environ-
ment is not clear. Improving the quality of wood by nutrient supplementa-
tion speeds development somewhat (Section 15.4.1.1), and maintaining an
adequate moisture level in wood can prevent protracted development (see
above). These results suggest that wood-feeder development is somewhat
constrained by nutritional factors, but in spite of apparent easing of these
constraints, growth rates remain relatively slow and developmental times
remain relatively long. The high fiber and tannin content of woody tissues
may explain in part slow wood-feeder growth. High levels of these sub-
stances are known to reduce the bioavailability of protein and minerals such
as Ca, Zn, Fe, and P (see Mattson and Scriber, Chapter 3).

Further evidence suggesting that wood-feeder development is constrained
by nutritional factors in nature is that wood feeders often exhibit accelerated
development when reared on artificial diet (Table 15.6; Baker and Bletchly,
1966; Cymorek, 1966, 1975; Gardiner, 1970; Antonio et al., 1975; Solomon
and Abrahamson, 1976; Kiihne, 1981; Nielsen, 1981). However, caution
must be used when viewing these data, because faster growth on diet may
merely reflect higher rearing temperatures in the laboratory rather than im-
proved nutrition per se. For example, the approximately 200-day develop-
mental periods of the cerambycids Chion cinctus and Enaphalodes rufulus
when reared on diet at 30°C (Table 15.6) may approximate the number of
heat units accumulated during two growing seasons, which is the usual time .

- required by these insects to complete development under field conditions.

‘On the other hand, cerambycids such as Xylotrechus colonus, Neoclvtus
acuminatus, and H. bajulus »d.o appear to develop faster, in absolute terms,
when reared on diet (Table 15.6), possibly because of improved nutrition and
increased rates of consumption. :
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Developmental times of some phloem-feeding scolytids (Bedard, 1966;

Ol a
-&:’ -é £3 - ?T 3 9»' § Yearian and Wilkinson, 1967) and the root-feeding cerambycid Prionus im-
H] FEE s 3 < £ bricornis (Payne et al., 1975) are not reduced in absolute terms when reared
'E gES T2 2 5 g on diet. Such results suggest that (1) developmental time in these insects
< 2°° ] g § " § v TE & may be under strong genetic control, (2) these larvae are already feeding and
g s BRE35 S5 A3 growing at their maximal rates in their usual food, or (3) some critical factor
jg § ; g 5 (whether physical or chemical) is lacking in the diet.
€ |5|828 T |00 £E3
- § =3 £2 o “7 Sa 15.4.1.3 Effects on Body Size. Wood feeders exhibit substantial intraspe-
5 |3 g8 cific variation in adult body size. Andersen and Nilssen (1983) concluded
< 2|3 > :a Elewnmomeom e z3 that size vanatlon.(calc'ulated as the ratio I = length qf longest individual/
§ Z|<8§E|T~"9/= a= s % ] length of shortest individual) was greater in wood-feeding (range of means:
& RE5¥ I = 1.4-2.1) than in free-living (I = 1.1-1.4) Coleoptera. We found, using
£ & 222 S data from Baker (1972), Hickin (1975), Smith (1976), and Dominik and
3 i TTT Es5% Starzyk (1983), that the xylomycetophagous Hymenoptera have even
s :'f “g’ 22222 = c é < greater size variation (I = 2.8 for 12 siricids'and 2.8 for 9 xiphydriids). Such
E Z N - :’5 :, wnw «n > g 2 ;Sé’ extremes in size ratios suggest that wood feeders have evolved a high degree
£ T |f22xax ay 22 of plasticity in the critical larval body size required to molt or pupate
g . N (Slansky and Scriber, 1985). Alternately, a wide range of body sizes may
.‘3 S 9 EE indicate a high degree of genetic variability within a population. Evidence
g loopooo0000 g e supporting a nutritional basis for size variation is seen in the phloem-feeding
£ S|z z f S scolytid I. calligraphus, in which average-size adults produce progeny that
g 2|3 [E|RRERK8LRL |58 g are smaller than themselves when oviposition and development occur in thin
:’ .§ %" S ;; TS (<beetle width) but not thick (>beetle width) phloem (Haack et al., 1987a).
:é-‘ 3| g o : - ,'S Moreover, the smaller progeny adults from thin phloem, when allowed to
5 g|xI¥ RRIRIRKREIR |3 2% colonize thick phloem, produce a subsequent generation of adults that are
< 3| . 823 larger than themselves.
9 & _§ | 2208220eg £X é According to Andersen and Nilssen (1983), wood feeders with the small-
E Z| = E|lS58585555E|2¢5¢ est degree of size variation are those in which there is some degree of
; é) S8R ESTT 5 3 % parental care (e.g., I = 1.4 for bark beetles). Moreover, they reported that
E oo N 287 xylem feeders exl}ibit more size variation than phloem feeders anfl that
E L8 L s s S% among xylem-feeding Coleoptera, cerambycids have the greatest variation.
e g ‘s _Ey :5 “ g H E Qur value of I = 2.8 for the xylon?ycetophagous Hymenoptem is over twice
8 SETS g’.g |8 k- that of xylomycetophagous scolytids and platypodids (I = 1.2; Andersen and
e% E SScoos e 2 ,5.3 : Nilssen, 1983), perhaps reflecting differences in the extent of parental care
::: S g 5 E -i; § =§. E e § § ® (greafer in thﬁ: ambrosia beetles) or differences in the quality or proportion of
- g 8 § s E:i 22 . : § $5 E° the diet that is fungus.
£5 SISSESEE £3|885 ,
=z @IXZILII UX bl 15.4.2 Phloem Thickness

- The thickness of the phloem layer can greatly influence. the performance of
phloem-feeding insects. This occurs because more outer bark and sapwood
~ must be chewed (and possibly consumed) when the phloem layer becomes
thinner than the insect. Increased consumption of these denser and less
nutritious tissues (Table 15.2) would provide phloem feeders with fewer net
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nutrients per unit length of gallery. Evidence supporting this hypothesis is
found in laboratory studies of 1. calligraphus (Haack et al., 1984a,b, 1987a)
in which (1) females live longer and lay more eggs per day, per unit length of
gallery, and over their lifetime; (2) larvae develop faster; and (3) progeny
adults attain a larger body size when in thick rather than thin phloem. More-
over, progeny adults that develop in thick phloem contain more lipid and fly
longer (tethered flight) than those from thin phloem (Slansky and Haack,
1986; see also Atkins, 1975). Under experimental field conditions, /. calli-
graphus attack density (nuptial chambers/dm?), egg density (eggs/dm?),
brood developmental rate, brood density (emerged brood adults/dm?), and
brood—adult body size were all positively correlated with phloem thickness
(Haack et al., 1987b). These results suggest a feedback mechanism in which
host quality influences both attack density and egg density and thereby
minimizes intraspecific competition. Supporting evidence comes from labo-
ratory studies in which I. calligraphus brood survivorship was similar in
thick and thin phloem (Haack et al., 1987a). Additionally, phloem thickness
is recognized as a key variable influencing performance of the scolytid Den-
droctonus ponderosae (Amman, 1972; Amman and Pace, 1976) and develop-
ment time in certain pine-infesting cerambycids (Haack and Wilkinson,
1987).

15.4.3 Temperature

Although wood feeders live in what is seemingly a well-buffered environ-
ment, they are at times subject to rapid changes in temperature. Subcortical
and sapwood temperatures in trees and logs exposed to sunlight can be
.several degrees (5-30°C) greater than shaded portions (Graham, 1925;
Savely, 1939; Wallace, 1953). Warmer temperatures experienced on the
sunny versus the shaded side of logs can cause a 1- to 2-year difference in
developmental time for phloem-feeding cerambycids (Graham, 1925; Hosk-
-ing, 1977). However, temperatures are often so extreme on sunlit portions
that few if any wood feeders exist there (Graham, 1925; Savely, 1939).
Temperatures change faster in.decayed wood than in sound wood (Wallace,
1953). The distribution of wood feeders within buildings may also be related
to temperature. For example, the upper lethal temperatures of A. punctatum
and H. bajulus are about 30 and 45°C, respectively, possibly explaining why
attic and roof timbers are attacked primarily by the latter (Becker, 1977).
Voltinism patterns and developmental times are governed largely by tem-
perature. For example, the number of generations per year completed by
1. calligraphus varies from four in the mountains of Califernia (Wood and
Stark, 1968) to nine in northern ‘Florida (Haack, 1985b) and to as many as 12

in Mexico (Ascencio, 1979). In northern Florida, generation times range
from 27 days during the warm summer months to 81 days during the cool _

winter months (Haack, 1985b).
Increases in temperature are known to improve reproducuve efﬁcnency in
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I. calligraphus (Haack et al., 1984b). For a given thickness of phloem, fe-
males lay more eggs over the same length of gallery as temperatures increase
from 20 to 30°C (Fig. 15.2), suggesting increased efficiencies of assimilation
and conversion of ingested food with increasing temperature (Slansky and
Scriber, 1985).

15.5 CONCLUSIONS

Wood feeders exhibit a number of adaptations to living and feeding within
the woody environment. Their body form, digestive tract, enzymatic abili-
ties, developmental time, adult size, and pattern of host colonization reflect
the particular wood tissue they inhabit.

The many sources of variation in woody-tissue quality should be consid-
ered in biological studies of wood feeders. Researchers should provide de-
tails on when (season) and from where (site and location along and within the
stem) host materials were obtained and how they were stored and treated
prior to the studies or chemical analyses. Additionally, to provide the most
meaningful results, researchers should use host material that is representa-
tive of that which the insect under study commonly utilizes in nature.

Much is still to be learned about (1) how wood feeders, especially non-
conifer-infesting scolytids, locate their hosts and mates, (2) mechanisms of
host resistance in woody plants, (3) quantitative food utilization by wood
feeders in each of the various woody tissues, (4) symbiotic relationships
between wood feeders and their associated microorganisms, (5) why certain
wood feeders can be reared with relative easé on artificial diets (e.g., sco-
lytids and cerambycids) while others cannot (e.g., buprestids), and (6)
whether slow growth rate and long developmental time result from environ-
mental constraints or are evolved life history attributes of wood feeders. A
sound understanding of wood-feeder nutritional ecology will allow develop-
ment of population dynamics models and stand hazard rating systems, insect
dispersal models, and silvicultural guidelines that are sensitive to insect-
host interactions (Berryman and Safranyik, 1980; Safranyik, 1985). Simi-
larly, such knowledge will allow for improvement of current pest-related
recommendations for managing, felling, storing, milling, drying, and utiliz-
ing timber and wood products (Becker and Liese, 1966, 1976).
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