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ABSTRACT. Formulations for determining conservation plans for sensitive wildlife species must

account for economic costs of habitat protection and uncertainties about how wildlife populations will

respond. This paper describes such a formulation and addresses the computational challenge of
solving it. The problem is to determine the cost-efficient level of habitat protection that satisfies a

viability constraint for a sensitive wildlife population. The viability constraint requires a high probability
of attaining a population size target. Because of the complexity of wildlife prediction models,

population survival probabilities under alternative protection plans must be estimated using Monte
Carlo simulation. The computational challenge arises from the conflicting effects of sample size: fewer

replications used to estimate survival probability increases the speed of the search algorithm but

reduces the precision of the estimator of the optimal protection plan. Importance sampling is

demonstrated as a simulation technique for reducing estimator variance for a given sample size,
particularly when the tail of the population distribution is of critical importance. The method is

demonstrated on a hypothetical problem involving gray wolf management in the Great Lakes region of

the United States. In comparison to random sampling, importance sampling produces a 21-fold
reduction in the variance of the estimator of the minimum-cost protection plan. Results from the

optimization model demonstrate the extreme sensitivity of the minimum-cost protection plan to the

structure of the growth model and the magnitude of environmental variation. This sensitivity is not

widely recognized in the literature on wildlife habitat planning and is a strong reason for using

optimization methods that can handle stochastic population models with a wide range of structures.
FoR. Scl. 43(1):129-139.

Additional Key Words. Importance sampling, metapopulation, Monte Carlo simulation, population
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ROTECTINGHABITATFORSENSITIVEWILDLIFESPECIESis a lation. The formulation has several strengths. First, it is
primary concern of national forest planners in the consistent with an approach increasingly used to evaluate

United States (Salwasseret al. 1984, Wilcove 1993). habitat protection plans for endangered wildlife species

Determiningappropriate conservation plans is difficult be- (Shaffer 1981, Boyce 1992). That approach uses population

cause decision-makers and the public are concerned not only viability analysis to predict the likelihood that an endangered

with foregone economic benefits of additional habitat protec- population will survive over some time horizon (e.g.,
tion but also with uncertainty about how wildlife populations Lamberson et al. 1992, 1994). Second, the formulation rec-

respond to habitat protection. Consequently, methods for ognizes that the likelihood of population survival is an

developing conservation plans must account for both eco- incremental quantity that depends on the amount of habitat

nomic costs and biological uncertainties, protected thereby allowing the estimation of the incremental

This paper presents such a method. The problem is to tradeoffs between the cost of habitat protection and the

determine theminimum-cost level of habitat protection that likelihood of population survival (Conrad and Salas 1993,

satisfies aviability requirement for a sensitive wildlife popu- Montgomery et al. 1994, Montgomery 1995, Haight 1995).
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Finally, the formulation meets the intent of USDA Forest The formulation assumes that periodic predictions of
Service'regulations that require protection of wildlife popu- wildlife population size can be made with a system of
lations at minimum cost. difference equations. Each habitat area supports a portion of

We address the computational challenge of solving this the regional wildlife population. During each time period, the
habitat protection problem. The viability constraint requires population in each area grows and then disperses. Population
a high probability of attaining a population size target, growth is a function of the current population size, the size of
Models for predicting survival probability are usually spa- the habitat area, and random growth conditions. The number
tially explicit and assume nonlinear density-dependent growth of dispersers depends on crowding, and the destination of the
(see Simberloff 1988, Boyce 1992, and Dunning et al. 1995 dispersers depends on the distance to and size of neighboring
for reviews). Because of this complexity, survival probabili- areas.
ties under alternative protection plans must be estimated The formulation assumes that economic development
using Monte Carlo simulation. The computational challenge activities such as forestry and farming are land uses that
arises from the conflicting effects of sample size" fewer compete with preservation by destroying habitat. The prob-
replications used to estimate survival probability increases lem is to determine how much of the existing habitat should
the speed of the search algorithm used to find optimal be preserved for the sensitive wildlife population and how
protection plans but reduces the precision of the estimator of much should be used for economic development. Although
the optimal plan. Importance sampling is demonstrated as a the formulation assumes that economic development de-
simulation technique for reducing estimator variance for agiven stroys habitat, this need not be the case. The formulation

sample size thereby improving the efficiency of estimating the could include activities that have varying degrees of either

minimum-cost protection plan with a desired level of precision, positive or negative effects on habitat quality and abundance.
.Investigating thesensitivity of minimum-costhabitatpro- The habitat protection problem is formulated to be

tection to assumptions contained in the wildlife prediction consistent with USDA Forest Service planning regula-
model is.an important component of conservation planning tions. These regulations require that enough habitat be

(e.g., Montgomery, 1995). Sensitivity analysis is required protected to maintain a viable wildlife population. At the
because observations of population dynamics under altema- same time, the regulations require the development of
rive habitat configurations are usually not available to deter- cost-efficient protection plans. Assuming that the most
mine the reliablity of model forecasts (Conroy et al. 1995). significant cost of habitat protection is foregone economic
•Two components of wildlife models that greatly affect popu- development, we determine the minimum-cost protection
lation predictions are the structure of the relationship be- plan subject to a viability constraint for the sensitive
tween population growth and crowding and the magnitude of population. The problem formulation is:
environmental variation affecting population growth (Boyce

1992). In the context of a hypothetical problem involving the min cx
protection of a gray wolf (Canis lupus) population in the O<_x<_u

upper Great Lakes region of the United States, we demon- s.t. Pr[N(x; E) > n] > p (1)
strate the importance of these model assumptions on wolf
population predictions and the amount of habitat required to
meet a viability requirement for the wolf population.

The paper proceeds as follows. The first section presents where
thehabitat protection problem. The second section describes

an approach to optimization and highlights stochastic simu- u -= the vector of initial sizes of habitat areas
lation methods that improve search efficiency. The third
Section describes an application of the problem formulation x - the vector of decision variables for habitat areas

and solution method to a hypothetical problem involving the c = the vector of unit costs of preservation
management of gray wolves. We conclude with a discussion
of the results and avenues for further research. E -- the matrix of random environmental effects

N(x; E) - the population size at the end of the horizon

The Habitat ProtectiOnProblem n - the targetpopulation size

To demonstrate our methodology, we formulated a rela- p -- the margin of safety.
tively simple habitat protection problem. The formulation is
for a landscape composed of areas of prime habitat for a
sensitive wildlife population. The areas are fragmented and The decision variables x are the sizes of the habitat areas
surrounded by unsuitable habitat. For example, habitat areas reserved from development. Assuming there are k areas, u, x,
could be areas of forest surrounded by agricultural land. For and c are vectors of k positive real numbers.

simplicity, attributes of the habitat other than size are con- Time enters the problem through the prediction of
. stant over time. The formulation could include predictions of wildlife population size. Assuming there are T time peri-

habitat attributes such as vegetation structure and composi- ods, E is a k x T matrix of random variables (one for each
tion tliat affect habitat quality over time. habitat area and time period) representing environmental

130 ForestScience43(1)1997



effects on population growth (e.g., weather, human-caused obtain the ending population size.
mortality, and prey abundance). An example of distribu- An estimator of Pr[N(x; E) > n] is computed using
tions for the random variables comprising E will be given Monte Carlo simulation. We randomly select a set of d

in the application, but no particular functional form is scenarios, denoted {e}, and compute N(x; E) under each
required by the solution technique. The random variable scenario. Each N(x; _) is considered a success or failure
N(x; E) is the sum of the period T ending populations depending on whether or not it exceeds the target n.
across all habitat areas and depends on the sizes of the Because the outcome is a Bernoulli random variable, the
habitat areas and random environmental effects. Because mean of d Bernoulli trials [i.e., the percent of d scenarios

there is no closed form expression for N(x; E), the for which N(x; _) > n] is an unbiased estimator of the actual

probability distribution of N(x; E) is obtained using the value of Pr[N(x; E) > n]. Letting Yi be the outcome of the
deterministic simulation of the difference equations for ith scenario (Yi = 1 if N(x; _) >_n and Yi = 0 if N(x; _) < n),

population growth and dispersal within a Monte Carlo the mean of the d Bernoulli trials is
simulation of random environmental effects. The simula-
tion methods described in the next section can be used with a

a wide range of population models. _i=1 Y/

The viability constraint is the foundation of the protec- /3= _ (2)
tion problem. A population is viable if its predicted size at

the end of the horizon exceeds a population size target n. The estimator/3 is compared with the margin of safety
The target reflects the decision-maker' s judgment about a p to estimate whether the vector of reserve sizes x satisfies
lower bound on the viable population size at the end of the the constraint Pr[N(x; E) >_n] > p.
planning horizon. Because of random environmental ef-
fects, the predicted population size is a random variable, Sample Size
and whether or not the size target is exceeded must be The number of scenarios in {e } affects the precision of

viewed probabilistically. The resulting viability constraint the estimator /3. Precision is measured by the confidence
•is called a safety rule (Lichtenberg and Zilberman 1988) interval half-width for /3, which is proportional to
because it limits to some small value, 1 -p, the probability

of violating the size target n. The lower boundp is a margin j

• of safety that. represents the decision-maker' s aversion to _(/3) = _ /3(1-/3).
uncertainty about reaching the target. Because the conse- d- 1
quences of not having a viable population are dire, the

margin of safety is typically set high (e.g., 0.950, 0.990, or Because the viability constraint requires a small prob-
even 0.999). If the constraint is not satisfied when all of the ability, 1 - p, of violating the population size target, fea-

available habitat is preserved, the problem is infeasible sible protection plans fail to meet the target only under rare
and the decision-maker's viability goals must be revised scenarios of relatively severe environmental effects. The
or remain unmet, estimator/3 depends on the number of these rare scenarios

in the set {e }, and the precision of the estimator increases

Solution Method as d increases. Because/3 is sensitive to the number of rare
scenarios in {e}, a large sample size d is required for a

The approach to solving the habitat protection problem desirable level of precision. For example, if 1 - p = 0.01,
involves a search algorithm that systematically evaluates a sample size of about 10,000 scenarios is required for
the costs and population survival probabilities of alterna- _(/3) to be less than 10% of 1 - p.
tiv e protection plans. This section shows how the survival The precision of the estimators of Pr[N(x; E)>_ n] under
probability Pr[N(x; E)> n] is estimated using Monte Carlo alternative protection plans affects the precision of the
simulation, discusses the effects of sample size on estima- estimator of the minimum-cost feasible protection plan.
ti0n and optimization, and introduces two methodolo- The estimator of the optimal plan is the mean of solutions

giesmimportance sampling, and retrospective optimiza- obtained using different sets {e}. If the number of sce-
tion---_for improving the efficiency of optimization, narios in each {e } is small, estimates of Pr[N(x; E) >_n]

Estimating Pr IN(x; E) 2 n] under any given x will vary widely across sample sets {e }.
Estimating Pr[N(x; E) > n] for a given vector of reserve This variability, in turn, will cause the set of feasible plans

sizes x involves the deterministic simulation of the differ- and the minimum-cost plan to vary widely across sample

ence equations for population growth and dispersal within sets {e}. Consequently, increasing the number of sce-
a Monte Carlo simulation of random environmental ef- narios in {e} increases the precision of estimators of

fects. Each deterministic simulation is the computation of Pr[N(x; E) >_n] and the optimal protection plan.

N(x; e) where e is one realization of the matrix of random The number of scenarios in {e } also has important conse-
variables comprising E. We call e a scenario of environ- quences for the speed of the optimization algorithm. A
mental effects. For fixed x and e, N(x; e)is obtained by variety of optimization techniques could be used to deter-

. computing population growth and dispersal in each time mine the cost-minimizing protection plan. For instance, the
period and summing the populations across reserves to constraint Pr[N(x; E) >_n] > p could be brought into the
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objective function using a Lagrangian multiplier, and a Yij be the outcome of the ith scenario in class j (Yij = 1
. gradient search could be performed. Any technique will if N(x; e) > n and Yij = 0 if N(x; e) < n)

require the evaluation of Pr[N(x; E) >_n] > p for many values
of x. Thus, any reduction in the number of scenarios in {e }

will greatly ;increase the speed of the search algorithm. The _2 (_mj)
,, i=l (3)next subsection describes a sampling technique that reduces P = j-1 wj Yij

the standard error of the estimator/3 for a given number of D
scenarios in {e }thereby reducing the need for a large sample.

Importance Sampling which recognizes that each scenario was obtained from a
A class of simulation tools used to address problems in sample of size D. Even though the set {e } contains a larger

which solutions are sensitive to rare, stochastic events is proportion of worst-case scenarios than would be obtained

called importance sampling (see Nelson and Schmeiser 1983 in an ordinary random sample, the weights assure that /3
for an intuitive discussion of these techniques). Importance is not biased (i.e., E{/3 } = E{Pr[N(x; E) > n]}). This
sampling methods force a lar.ger number of the rare events design for obtaining a sample set {e } gives a better estima-
]_romthe underlying distribution into a sample that is used for tor for Pr[N(x; E) >_n] (i.e., an estimator with lower
simulation. Inference from the simulations is done in a way standard error) than a sample set of the same size obtained
to correct for sampling bias. with random sampling. We will show in the application

We use an importance sampling method called Russian that importance sampling also produces a more precise
roulette (see Hammersley and Handscomb 1964) to obtain estimator for the optimal habitat protection plan.
the set of scenarios {e } used for simulation and optimiza- Although the importance sampling technique provides a
tion. The method involves repeatedly drawing scenarios better estimator for Pr[N(x; E) >_n],the method requires more
and classifying each according to the size of the popula- computational effort than random sampling because a larger
tion it is likely to produce. Suppose we define two classes, number of scenarios must be drawn and evaluated. In the next
Class 1 includes worst-case scenarios that are judged subsection we describe an optimization technique that allows
likely to produce one of the smallest population sizes us to use our sample, once drawn, to maximum advantage.

. regardless of the degree of habitat protection. Class 2 Retrospective Optimization
includes not-bad scenarios. Details on how these judg- Retrospective optimization is a technique that reduces the
ments are made will be given in the application section, overhead involved in repeatedly computing sets of scenarios
Suppose we keep 100% of the worst-case scenarios and {e }.In the course of an optimization run, many values ofx are
1% of the not-bad scenarios. The sampling stops when a considered. Rather than drawing a new sample {e } to esti-
Set of d scenarios is obtained, which requires, say, D trials. mate Pr[N(x; E) >_n] for each x, one sample set {e } is drawn

Because the set {e }contains more worst-case scenarios and used for all values ofx examined. This repeated use of the
and fewer not-bad scenarios than would be obtained in an

same sample set reduces overhead because the sample set is
ordinary random sample, the scenarios need to be weighted only drawn once. This technique was developed for the
according to the number of scenarios they represent. Let mj be optimization of Monte Carlo simulations by Healy and
the number of scenarios remaining in class j after discards Schruben (1991) and was further improved by Rubinstein
where and Shapiro (1993), Giirkan et al. (1994), and Chen and

Schmeiser (1995).

2 j=l my = d Confidence Intervals
In stochastic optimization, a single optimization run gives

and let Mj be the total number of trials in class j where only a single point estimate of the optimal solution. With no
confidence interval, the decision-maker has no way of know-
ing whether other optimization runs would produce similar or

• j=l Mj = D. dramatically different results. Such point estimates are not
sufficient for decision-making. We compute a confidence
interval for the optimal solution by repeating the entire

Let wj be the reciprocal of the proportion of scenarios in optimization for several sample sets {e} (see Figure 1 for
classjthat are kept. (i.e., Wj -- Mj/mj). Because we kept every flowchart). The half-width of the confidence interval de-
worst-case scenario, Wl = 1. Because we discarded 99% of the creases as the number of optimizations increases and the
not-bad scenarios, each kept scenario represents 100 not-bad variance of the estimator of the optimal x decreases. Because
scenarios and w2 = 100. importance sampling should reduce the variance of the esti-

The sample of scenarios {e } and their weights are mator of optimal x, fewer replications of the optimization
used to estimate the success probability Pr[N(x; E) >_n] should be needed to produce a narrow confidence interval. In
of a given protection plan x. Recall that, with random the following application, we demonstrate this variance re-
sampling, /3 is the percent of scenarios in {e } for which duction by comparing solutions obtained using importance
N(x; e) >_n (Equation 2). With importance sampling, sampling and random sampling methods.
the estimator depends on the scenario weights. Letting
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o,..,-.,_""pl-' of separate wolf populations linked by dispersal. The problem isDraw
L environt_ntal used to demonstrate three things:

" _ effects, ( e}
• the variance reduction using a solution method based on

importance sampling,

Set new deeisio_ • the tradeoffs between the risk of population extinction and
"_ variable values,/ cost of habitat protection,

X ] • the effects of population growth assumptions on the cost of

_ habitat protection.
¥

E_te_ Background
for current Except for small breeding populations in northern Minne-

X andg, sota and Isle Royale, gray wolves were extirpated from the
eastem United States by 1960 (Mech 1995). Since receiving

legal protection in 1974 under the Endangered Species Act of
1973, their numbers and distribution in the upper Great Lakes

region have greatly increased. Wolves in northem and central
Minnesota currently number around 2,000 (Mech 1995).
Individuals from Minnesota have recolonized areas of north-

optimal? ern Wisconsin and upper Michigan where they currently
number river 100 (Mech 1995). Assuming that the population
in Wisconsin and Michigan does not drop below 100, the

Y criterion for recovery of the eastern timber wolf population
(U.S. Fish and Wildlife Service 1992) should be satisfied

Record optimal before the year 2000.
• .t value An important problem facing managers of wolves in the

Lake States.involves the protection and enhancement of
small isolated populations (Fuller 1995). The landscape of
northern Wisconsin and upper Michigan is a mixture of
forest, agricultural, and developed land under a variety of

Enough public and private ownerships. Within this landscape, wolves
N replications for have settled in forested areas with few roads or human

confidence settlements (Mladenoff et al. 1995). Because favorable habi-
interval? tat occurs in small fragmented areas, the recovering popula-

tion includes local populations that are isolated in the sense
that immigration is relatively infrequent (Wydeven 1993,
Hammill 1993). Protecting isolated populations is important

Y not only for recovery, but also for postrecovery management.

Compute confidence After the wolf is declassified, management agencies maychoose a zoning approach that includes identifying relatively
interval for optimal small areas of favorable habitat where wolves may live free
solution from human exploitation (Mech 1995).

From detailed studies of wolf populations throughoutFigure1. Flowchartofretrospectiveoptimizationtechnique.The
inside,looprepresentsiterationsof a singleoptimizationrun North America (see Fuller 1995 for review), managers have
performedwithasinglesampleset{_}.Theoutsidelooprepresents gained an understanding of the relationships between factors
severaloptimizationrunsperformedwith differentsamplesets that affect wolf population growth and persistence. Theseto obtain a confidenceintervalfor the optimal solution.If
retrospectiveoptimizationwere not used,the drawingof the factors include mortality, dispersal, and habitat carrying
sampleset{_}wouldbe insideboth loops, capacity (Fuller 1995). In fragmented populations like those

that inhabit northern Wisconsin and Michigan, dispersal is

extremely important because immigration can greatly im-
Application" GrayWolf Management prove the persistence of small isolated populations subject to

high mortality rates (e.g., Fuller 1989).The numerical solution method is demonstrated on a

habitat protection problem for gray wolves, an endangered Hypothetical Problem
species currently repopulating the upper Great Lakes region This background along with knowledge of the current
of the United States. This section describes a model for wolf and potential wolf distribution in the upper Great Lakes

dynamics and a habitat protection problem involving three region (Mladenoff et al. 1995) provides the context for a
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hypothetiCal problem involving the protection and en- where Ri(Nilt, xi) is the instantaneous per-capita population

hancement of isolated wolf populations. Suppose there are growth rate and Ei,t...N(O, t_2) is the environmental variation
. two areas of favorable wolf habitat that are reserved from in the growth rate in patch i period t.

development and surrounded by land unsuitable for wolves. The per-capita growth rate R i depends on crowding. The
Although one area is saturated with wolves (e.g., north- expression for crowding, Ni,t(x; E)/ki(xi), is the ratio of
eastern Minnesota), the other area is just beginning to be current population size Ni,tand carrying capacity ki(xi)where
recolonized (e.g., northern Wisconsin). Between the two ki(xi) is an increasing function of reserve size xi. The central
broad areas is a small island of favorable habitat that has assumption in a logistic model of population dynamics is that
been colonized by migrants and is the primary source of per-capita growth rate decreases linearly with crowding and

immigration into the newly colonized reserve. The island, becomes negative when population size exceeds carrying
which is not a reserve, is under threat of development from capacity:
farming, forestry, and real-estate interests. The problem is

how much of the island should be protected from develop- /.Ni,t(x;E). x

ment in Order to create a viable wolf population in the Ri(Ni't'xi)-ri-ril)ki(xi)

(5)
newly colonized reserve.

The problem has features that typify environmental

disputes. Protecting more of the island habitat enhances where ri is the intrinsic rate of population increase at low
the viability of the colonizing population in the second population sizes. However, in some populations there is a
reserve by increasing the rate of immigration, which in crowding threshold below which per-capita growth rate de-
turn provides a buffer against chance mortality events, creases withdecreasingcrowding. This so-calledAlleeeffect
However, increased protection comes at a cost in terms of can have a variety of causes including the uncertainty of
foregone economic development. Estimating the tradeoffs maIes finding each other in a sparse population (Dennis
between the degree of protection afforded the island habi- 1989). The Alice effect is modeled by subtracting from the
tat and the cost of protection should enhance the decision per capita growth rate obtained with the logistic model a term
process, for growth reduction because of mating shortage so that

A Model for Wolf Dynamics

To address this problem, we built a spatially explicit (Ni,t(x;E)l( a I• population model for gray wolf dynamics. The model has Ri(Ni't'xi) - ri - ri ki(xi) - a + Ni,t(x;E ) (6)three assumptions that are common to wildlife models
used in conservation planning" the regional population is

separated into a number of subpopulations that interact where a represents the level of crowding at which the mating
through dispersal, the growth of each subpopulation is a success rate is 0.50 (Dennis 1989). With the Allee term, per-
nonlinear function of crowding, and growth is subject to capita growth rate increases with crowding, peaks, and then
random environmental effects, drops below zero as the population exceeds carrying capacity

The model assumes that there are three areas of prime (Figure 2).

wolf habitat. Let x = (Xl, x2, x3) be the sizes of the habitat In the baseline problem, we used Equation (6) to model
areas where Xl and x3 are large protected areas and x2 is a population growth rate because the likelihood of popula-
small island of favorable habitat betweenxl andx3. Areas lion survival diminishes in small wolf populations in
x 1and x3 are fixed and each equal to 5,000 km 2. Assuming
that a pack of five wolves requires a territory of 125 km 2
(Fuller i995), the carrying capacity of each area is 200 0.1

• wolves. The initial area of x2, the decision variable, is

•1,250 km 2 with a carrying capacity of 50 wolves. The 0.05
initial population sizes for Xl, x2, and x3, are 150, 25, and

10 wolves, respectively.

' The model uses density-dependent growth and dis- "=-_ 0

persal equations for the wolf population in each area.
Equation parameters and subsequent growth and dispersal t,.9

predictionsThe growthreflectof eachhabitatpopulationqualitYismodeledas describedwith abel°W'modified -0.05- _,ee ene_Log_tlem_odel"with

]i, , , ", , , , ", , , , , , , ,
logistic equation. Let Ni,t(x; E) be the population size in area
i at the beginning of period t. We compute Ni, t+l(x; E) by first -0.1
computing population growth and then dispersal. Letting 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Mi,t(x; E) be the postgrowth but predispersal population Crowdingsize, the growth dynamics are:
Figure2. Relationshipbetweeninstantaneouspercapitagrowth
rateandcrowdingusingalogisticmodelwithanAlleeeffect.The

. Intrinsicrateofpopulationincrease[r/in Equation(6)] is0.10and
Mi,t(x',E ) = Ni,t(x;E)exp{i_.(Ni,t,xi)+ El,t} (4) the Alice parameter [a in Equation(6)] is 0.01.
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which lone wolves have difficulty finding mates (Fuller Problem Formulation
1995). For each population, the intrinsic rate of population The baseline problem is to determine the minimum area of

growth ri is 0110 and the Allee parameter a is 0.01. With x2 required to create a viable wolf population in x3. The
these parameter values, population growth rates peak at viability parameters are a population size target n = 30 wolves
about 4% when crowding is about 40% and drop as popu- and a margin of safety P = 0.99. The management horizon is
lation size approaches carrying capacity (Figure 2). This 50 yr. The problem is:
range of growth rates is consistent with observations of

Wolf populations that are subject to moderate levels of min x 2
human-caused mortality (Fuller 1989). 0<x2<1250 (9)

The population growth rate is subject to random varia- s.t. Pr[N3,5o(x; E) > 30] > 0.99
tion caused by unpredictable changes in environmental

conditions [Ei,t in Equation (4)]. With adequate food and

protection fromhumanpersecution, wolfpopulationshave In sensitivity analyses, we examine the cost effects of
• great reproductive potential with maximum observed changing the population size target, the margin of safety, and

growth rates as high as 50% per year in colonizing popu- parameter values of the population growth equation forwolves in area 3.
lations (Fuller 1995). At the other extreme, populations
subject to intense human-caused mortality can decrease as Solution Method

much as 50% per year (Fuller 1995). We assume that each With only one decision variable, the problem is relatively
population is subject to a moderate degree of environmen- easy to solve. Because both the objective function and the
tal variation (t_i = 0.05, i = 1..... 3) so that the population left-hand-side of the constraint are increasing functions of the
growth rate ranges between + 15% most of the time. decision variable, the optimal solution is the level of x2 that

Following population growth, individuals disperse be- just satisfies the constraint. We used binary search to find an
tween areas. The goals of dispersing wolves are to find estimate ofthe optimal value ofx2. The solution is an estimate
mates andenough resources to propagate, and the distance because it is obtained using a given sample of scenarios {e }.
traveled usually depends on mate and resource availability The binary search is repeated for each of 10 different sets of
(Mech 1987). If dispersers find mates and resources lo- scenarios producing 10 estimates of the optimal solution. Our
cal!y, they settle close to their natal territory. Long-dis- estimator for the optimal solution is the mean of these

• tance dispersal (i.e., between reserve areas in our model) estimates.

is more common when an area is saturated. Consequently, Recall that our importance sampling procedure for deter-
we assume that the per-capita rate of emigration, Di,t, mining the set of scenarios {e} is aversion ofRussian roulette
increases linearly with crowding: that creates a sample in which a large proportion of the

scenarios in {e} are relatively rare and severe (in terms of
negative effects on population growth) sequences of random

Oi t (x; E) : _i Mi't (X;E)
' k i(x) (7) environmental effects. Our procedure for classifying severityis based on percentiles of the estimated probability distribu-

tion of ending population size in area x3 assuming full

We assume only small proportions of the populations in protection of area x2 (our results show no sensitivity to this
the large protected areas (Xl and x3) become long-distance assumption). This distribution is obtained by randomly drawing
dispersers ([_1= 0.02), while a larger percent of the popula- 500 scenarios e and computing N3,50(x;,e) for each e. We use
tion inthe smaller area x2 move between reserves ([_2= 0.10). percentiles 0.02, 0.05, and 1.00 for the classification. For ex-

The destination of dispersers is modeled with a matrix of ample, each scenario that produces an ending population below
destination parameters. The fraction of dispersers from area the 0.02 percentile is classified as a worst-case scenario.

i j that are in area i after dispersal is a constant '_'i, where To compute the sample set {e}, we repeatedly draw ascenario e, compute N3,50(x; e), and classify using the percen-
tiles of the probability distribution. We keep all scenarios that

Li "_ji ---- 1. produce population sizes below the 0.02 percentile, 10% of
I

the scenarios that produce populations sizes between the 0.02

and 0.05 percentiles, and 0.1% of the scenarios that produce
We assume that all of the dispersers from areas 1 and 3 population sizes above the 0.05 percentile. Sampling is

move to area 2. Dispersers from area 2 are equally likely to stopped when 500 scenarios are obtained. With this design,
reach areas 1 or 3. The equations for dispersal link the roughly 80% of the scenarios in {e} will be worst-case
populations and complete the periodic growth cycle: scenarios.

Results
Ni,t+l(X;E) = Mi,t(x;E ) - Mi,t(x;E)Di,t(x;E)

3 (8) Variance Reduction from Importance Sampling
. +2 "_j,iMj,t (x; E)Dj, t(x; E) To estimate the variance reduction from importance sam-

j-1 piing, we computed 10 estimates of the optimal solution to
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the baseline problem for each of two methods for obtaining Table2. Computationalresults(minutesofexecutiontime)fora
simple model solved using random sampling and importance

. {e}" importance sampling and random sampling. A sample sampling.
size of 500 was used for each method.

Importance sampling resulted in a 21-fold reduction in the Sampling Execution time for 10 Execution time for equal
method optimization runsa confidence intervalsbvariance Ofthe estimate of the optimal solution (expressed as

the percent ofx2 preserved as wolf habitat) relative to random Random 5 105
sampling (Table 1). The 95% confidence interval for the Importance 100 100
estimate of the optimal solution obtained with importance

sampling was almost 5 times smaller than the confidence a Foreachoptimization run, importance sampling required 9.5min.of
setup time whereas random sampling required no setup time. The

interval obtainedwith randomsampling anddid not contain search algorithm required 0.5 min. regardless of the sampling method.
the mean solution obtained with random sampling. This b Executiontimeforrandomsamplingiscomputedsothattheconfidence

interval would be the same as that produced by importance sampling
suggests that the point estimate obtained from random sam- using 10 optimization runs. Random sampling is assumed to yield a 21-

piing is not a particularly good estimate of the true value of foldincreaseinthevarianceoftheoptimal solutionsfora given number
of optimization runs compared with importance sampling.

the optimal solution (i.e., we are 97.5% sure that the true
value is strictly greater than the point estimate from random overhead for importance sampling will be a less signifi-

sampling), cant proportion of the total execution time. For example,
While importance sampling resulted in a 21-fold reduc- if search time for one optimization run is 60 min. for both

tion in variance, it used much more execution time for the 10 sampling methods, importance sampling would require

optimization runs than did random sampling (Table 2). For an only 16% more execution time for 10 optimization runs
average optimization run, importance sampling used 9.5 compared with random sampling (Table 3). To get the
minutes to generate a sample and 0.5 minutes to search for the same confidence interval width, random sampling would
optimal solution. In contrast, random sampling required require 18 times more execution time than importance
practically no setup time and the same search time. Conse- sampling. Consequently, variance reduction via impor-

tance sampling can make larger problems tractable.quently, 10 optimization runs using random sampling were

completed in 5 minutes whereas importance sampling re- Risk-Cost Tradeoffs

quired 100 minutes. We used multiple runs of the optimization model to
. . Although importance sampling required more execution estimate the costs of meeting alternative population tar-

time for a fixed number of optimization runs than did random gets and margins of safety for the wolf population in area
sampling, importance sampling would require fewer optimi- x3 (Figure 3). Cost is expressed as the percent of x2
zation runs to obtain a fixed confidence interval width for the preserved as wolf habitat. The population size target and
optimal solution. The confidence interval half-width for the margin of safety represent risk parameters" the risk of
estimator of the optimal solution is proportional to (_/_ population extinction increases as the population size
where n is the number of optimization runs and t_ is the target and margin of safety decrease. The cost curves give
standard deviation of the solutions. Thus, a 21-fold increase policy makers a feel for how sharply cost changes as a
in variance of solutions obtained with random sampling function of these risk parameters. Great cost reduction can
would result in a 21-fold increase in the number of optimiza- be obtained by reducing the population target from 30 to
tion runs required to obtain a confidence interval of the same 20 wolves or reducing the margin of safety from 99% to
width as importance sampling. We estimated the execution 95%. This sensitivity of economic cost to changes in the
time required for random sampling to produce a confidence risk parameters lets policy makers know that the param-
interval width equal to that obtained with importance sam- eter values must be set carefully. The willingness of polic)
piing Using 10 replications (Table 2). In this case, both makers and society to accept increased extinction risk it
sampling methods would require about the same overall trade for economic gain will play a large part in choosin_
execution time. the values of the risk parameters.

Importance sampling should display greater efficiency

• as problem size increases beyond a simple one-dimen- Table 3. Estimates of execution time (minutes) required to solw
sional problem. As the amount of time required to search a larger conservation problem using random sampling and im
for an optimal solution increases in larger problems, the portancesampling.

Sampling Execution time for 10 Execution time for equal
:Table1. Comparisonof estimatesof the minimum-costprotec- method optimizationruns_ confidenceintervalsb
tionplan(expressedasthe percentofhabitatareareservedfrom
development)obtainedusingimportancesamplingandrandom Random 600 12,600
sampling. Importance 695 695

Minimum-cost plan a For each optimization run, importance sampling is assumedto requir9.5 min. of setup time whereas random sampling required no setu
Sampling time. The searchalgorithm is assumed to require 60 min. regardless(
method Mean Variance 95%CI the sampling method.

b Executiontime for randomsampling iscomputed sothat theconfiden(
• interval would be the same as that produced by importance samplin

. Importance 0.689 !.18 X 10 -3 0.664, 0.714 using 10 optimization runs. Random sampling is assumed to yield a 2
Random 0.639 2.57 x 10-2 0.524, 0.754 foldincreaseinthevarianceoftheoptimalsolutionsforagivennumb,

of optimization runs compared with importance sampling.
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habitat protection increases with decreasing values of r3 and
1 - increasing values of (_3.For r3 < 1.08, population growth is

too low to meet the population size target regardless of the
0.8 degree of environmental variation. For r3 > 1.16, population

growth is high enough so that area 2 needs no protection. For

0.6 i afety 1.16 < r3 < 1.08, cost depends on the degree of environmental

_o variation. With low levels of variation, population growth is
* sufficient to reach the target without immigration. However,0 0.4-

as environmental variation increases, high levels of immigra-
tion are needed to balance the effects of wide population

0.2 - growth fluctuations.
' ¢ These results demonstrate that management actions af-

I 0 , , , , , , , , , , , , fecting the intrinsic rate of growth and environmental varia-
0 • 10 20 30 40 50 60 tion will influence the cost of habitat protection. Examples of

_ management actions that affect population growth and vari-
Population' target ability include increased enforcement of wolf poaching laws

Figure3.Costofhabitatprotectionasafunctionoftheparameters and restrictions on deer hunting in sparsedeer years. If cost
of the viability constraint, functions for these activities were incorporated in the optimi-

Cost Effects of Growth Assumptions zation model, the optimal allocation of cost between manage-
ment actions and land protection could be determined.

It is well known that assumptions about population growth The Allee effect has a big impact on the cost of habitat
and dispersal can greatly impact population survival prob- protection. To see this, we repeated the sensitivity analysis onability (e.g., Stacey and Taper 1992). In our model, the cost

intrinsic rate of growth and environmental variation using theof habitat protection is highly sensitive to changes in the
parameters of the growth and dispersal equations. To demon- pure logistic growth model [Equation (5)] for the populations

in the three habitat areas. Without the Allee effect, the costs
strate this sensitivity, we modified the baseline problem by

systematically changing the values of two growth parameters of habitat protection are dramatically less across the range of
for the wolf population in area 3. Intrinsic rate of growth (r3) parameter values (Figure 5). Because the logistic model

• varied between 0.0 and 0.2, and the degree of environmental predicts much higher growth rates for small populations than
does the Allee model (Figure 2), the initial population in areavariation ((_3)varied between 0.0 and 0.1. The minimum-cost
3 reaches the population size target with no immigration from

level of habitat protection required to meet the population
area 2 for most combinations of parameter values. These

viability constraint in the baseline problem was calculated for
results emphasize that assumptions about the nature of den-

each combination of parameter values (Figure 4). The cost of
sity dependence in growth rates can have a major effect on
population size predictions and the levels of habitat protec-
tion required to attain a population size target.

1.0 1.0

1
• 0.8 0.8

0.6 0.6

0._ 0._

o. o.O

._o _o _'_,s, _,_'_-o "*" _"_

Figure 4. Cost of habitat protection as a function of the intrinsic Figure 5. Cost of habitat protection as a function of the intrinsic
per capita growth rate and degree of environmental variation per capita growth rate and degree of environmental variation
(expressed as the standard deviation of the variability in (expressed as the standard deviation of the variability in

. population growth rate) using a logistic growth model with an population growth rate) using a logistic growth model with no
Alleeeffect. Allee effect.
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Conclusions lation must be used to estimate probabilities of population
- survival under alternative protection plans. Two important

Problem Formulation conclusions can be drawn from our investigation of simula-
The formulation we present for determining cost-effective tion methods. First, because the population viability con-

habitat protection plans for sensitive wildlife populations has straint requires a very small probability of extinction, a large
two important features that distinguish it from the ways in number of repetitions of the wildlife model is required to
which habitat protection is handled in most timber harvest obtain high levels of precision of the estimators of survival
scheduling models. First, the formulation includes uncer- probabilities and minimum-cost protection plans. Second,
tainty in wildlife response to habitat protection. It does so by for a given sampling intensity, importance sampling provides
"incorporating a stochastic model of wildlife dynamics di- more precise estimators of survival probabilities and mini-
rectly in the optimization framework. Accounting for uncer- mum-cost protection plans than does random sampling. A1-
tainty allows the estimation of incremental tradeoffs between though importance sampling requires greater execution time
•habitat protection costs and the likelihood of population to generate a sample, this overhead will become less impor-
survival (Conrad and Salas 1993, Montgomery et al. 1994, tant for problems with more decision variables that require
Montgomery 1995, Haight 1995). Estimating the likelihood greater execution time for the search algorithm. The variance
of population survival is consistent with the population reduction resulting from importance sampling may allow
viability analysis approach that is increasingly used to evalu- larger problems to be solved with reasonable precision.

ate habitat protection plans for endangered wildlife popula- Future Work
tions (Shaffer 1981, Boyce 1992). Second, the optimization
formulation accommodates population models with a wide Clearly, using simulation to evaluate the risks and costs of

wildlife conservation plans limits the size of optimizationvariety ofdifference equation structures. This flexibility
problems that can be solved. Nevertheless, prudent formula-allows investigation of the sensitivity of minimum-cost pro-
tion of the decision problem and search methodology shouldtection plans to assumptions contained in the wildlife predic-
make larger problems tractable.tion model. As the analysis of wolf management indicated,

predictions of population size and minimum required habitat Although our formulation is relatively simple, the solution
protection can be very sensitive to assumptions about popu- method is simulation based, giving a wide range of possible

. lation growth rate and environmental variability. Sensitivity extensions. For example, the formulation could include pre-
dictions of vegetation attributes that affect habitat qualityanalysis is extremely important because there is usually a
over time and activities such as tree planting or selectivegreat deal of uncertainty about the appropriate model struc-

ture and parameters for a given species (Conroy et al. 1995). logging that have varying degrees of either positive or nega-
tive effects on habitat quality. Because the number of deci-It is difficult to use harvest scheduling models based on
sion variables must be kept small for optimization tractabil-mixed-integer programming alone to study how manage-

ment actions affect the dynamics of wildlife populations, ity, tradeoffs between spatial and temporal detail must be
These formulations usually address habitat protection by explored.
regulating aggregate areas of forest cover-types (e.g., Hof Methodological work is needed to investigate the perfor-

mance of search algorithms for problems with more than oneand Raphael 1993) or spatial layout of logging blocks (e.g.,
decision variable. A straightforward approach is to incorpo-Hof and Joyce 1993, Weintraub et al. 1994, Yoshimoto et al.
rate the viability constraint in the objective function using a1994) without explicit consideration of wildlife dynamics.

When wildlife dynamics are incorporated (e.g., H0f et al. Lagrangian multiplier or penalty function. However, because
the estimator for Pr[N(x; E) >_n] is the mean of a number of

1994), the dynamics are typically assumed to be linear and Bernoulli trials, the estimator is not a continuous function of
deterministic. Instead, combining mixed-integer program-
ming and simulation might be appropriate. The analysis x. Thus, search methods based on gradient approximation can
would begin with a mixed-integer programming model that give erratic results. One way to avoid this problem is to

replace the viability constraint Pr[N(x; E) >_n] > p with an
allocates a fixed amount of acreage to wildlife habitat re-
serves while meeting protection and output requirements for approximation that is a continuous function of x and employ

a gradient method for optimization. Another way is to use
other resources. Then, simulation analysis would evaluate

Bernoulli trials to estimate Pr[N(x; E) >_n] but to employ
and adjust the reserve areas using stochastic models of

search methods that do not require continuity to estimate the
wiidlife dynamics. Dual values from the linear programming
analysis Would be used as coefficients for cost minimization, optimal habitat protection plan.

An alternative approach to conservation planning is to
The reserve areas obtained from the simulation analysis

• would then be used as constraints in the mixed-integer compare a small number of predefined conservation plans
programming model to adjust activities for the other forest with different values for a range of decision variables. When
resources. This entire analysis could be done for multiple risk the measures of performance are functions of random vari-
levels if knowledge of tradeoffs between risks and costs were ables and sensitive to rare events, huge numbers of simula-
required, tions are required to increase the precision of performance

estimators. Importance sampling can be extremely useful in
. Solution Method this setting by reducing the simulations needed to obtain

Incorporating wildlife dynamics in a habitat protection precise performance estimators thereby increasing the statis-
problem makes the problem difficult to solve because simu- tical reliability of plan comparisons.
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