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ABSTRACT

Population genetics theory has dealt only with the spatial or geographic pattern of degrees of relatedness
or genetic similarity separately for each point in time, However, a frequent goal of experimental studies
is to infer igration patterns that occurred in the past or over extended periods of time. To fully understand
how a present geographic pattern of genetic variation reflects one in the past, it is necessary o build
genealogy models that directly relate the two. For the first time, space-time probabilities of identty by
descent and coalescence probabilities are formulated and characierized in this article. Formulations for
general migration processes are developed and applied to specific types of systems. The results can be
used to determine the level of certinty that genes found in present populations are descended from
ancient genes in the same population or nearby populations vs, geographically distant populations. Some
parameter combinations result in past populations that are quiie distant geographically being essentially
as Hkely to contain ancestors of genes at a given population as the past population located at the same
place. This has implications for the geographic point of origin of ancestral, “Eve,” genes. The resuits also
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form the first model for emerging “space-tirme” molecular genetic data,

NDERSTANDING how genetic lineages trace
through time and space has long been a central
concern of population genetics theory. Stochastic mod-
els of the spatial or geographic structure among popula-
tions in terms of levels of inbreeding (WricHT 1943)
or probabilities of identity by descent (IBD; MaLECOT
1948}, and more recently coalescence theory (KINGMAN
1982}, underpin such processes. Although much of pop-
wation genetics theory since Wright and Malécot has
focused on measures based on gene frequencies, recent
availabilitv of information on the degree of differences
among genes, which is obtained with many modern
molecular techniques, has stimulated much of the re-
cent modeling efforts. With respect to geographical ge-
netics, the original theoretical works of Wright and
Malécot and all works since have focused on describing
the geographic or spatial patierns of genetic variation at
the present tme or some other point in time. MaLfcor
(1946) developed the probability of IBD interpretation
and applied it to geographical genetics (MaLEcoT
1948). These are probabilities that genealogical lines of
descent occur, with mutations superimposed. Malécot
also developed what he termed “les chaines de parenté
gametique” (MaLEcoT 1950, 1973) or probabilities of
“gametic kinship chains” {e.g,, MarLEcoT 1975}, which
are the same as the probabilities of coalescences be-
tween pairs of genes (e.g., Hupson 1990). This probabil-
ity approach can be applied both 1o measures that in-
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clude degree of differences among genes (e.g., DNA
sequences) under the infinite sites models or to gene
frequency data under infinite alleles models, as well as
to processes under other mutation models (MALECOT
1975). In this article we take a first step in the develop-
ment of measures that more fully describe spatial-tem-
poral genealogical processes by extending measures of
the probability of IBD to time as well as space or geogra-
phy. That is, we develop space-time probabilities of IBD
as measures of the degree of shared ancestry, or alterna-
tively similarity, among genes separated in time as well
as space. Additional insights are gained into the nature
of genealogical processes in structured populations.
Various methods of estimating probabilities of IBD
based on genetic data have been established. For de-
cades various approximate estimators have been devel-
oped (e.g, MorTON 1969), although it turns out that
approximations involving system mean gene frequen-
cies are not necessary (G. MaLEcoT, personal communi-
cation). In any case, it is possible to use the sample
{observed) genetic identities to estimate values of proba-
bilities of IBD and hence migration and other parame-

ters (eg, RaNNALA 1996).

The significance of further understanding of space-
time processes lies in part in the fact that we often want
o understand historical migrational processes. There is
considerable interest in the geographic origins of ge-
netic polymorphisms and in the origins and spread of

- populations. Recent examples include the use of molec-

ular data to infer origins of ALU polymorphisms in

‘humans and the geographic origins of “modern” hu-

mans themselves (e.g., BATZER et al. 1996, 1997; STaNLEY
1997). The vast majority of studies utilize present geo-
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graphical paiterns of molecular variation. However, to
fully understand the significance of present relation-
ships to historical migrational processes we must charac-
terize the direct relationship of present genes to genes
in the past located in the same and different popula-
tions. 1t may seem a safe assumption that under most
circumstances a given gene at the present time is most
closely related to the past or ancient genes in the same
population; however, the given gene may also be very
closely refated to ancient genes in other populations,
perhaps in some cases quite distant geographically.
Analysis of space-time probabilities allows examination
of this. Not only might high probabilities extend for
considerable distances, they seemingly could even vio-
late the above assumption if migration rates differ
among directions, /¢, anisotropy (EPPERSON 1993a,b).
That is, it is conceivable that genes presently found in
a given population may be more closely related to those
ancient genes that were in other, perhaps quite distant,
geographic regions.

Another emerging feature of modern molecular ge-
netics is the ability to obtain ancient DNA from mum-
mies and even fossils {e.g., KRINGS ef al 1997), and
considerable genetic data are already available for vi-
ruses, such as data in the form of time series of DNA
variants in different geographic regions. The methods
in this article also model such genes separated in time
as well space, which is a first step in developing the
probabilistic underpinnings of analyses of space-time
molecular genetic data. Moreover, molecular data col-
lected from samples spanning a much shorter time scale
(even contemporaneous overlapping generations) also
require spatial-temporal measures.

MavLicoTr {eg, 1930, 1972, 1973, 1975) developed
elegant mathematical tools in characterizing the purely
spatial probabilities of IBD, thatis, how the probabitities
that two genes randomly selected from each of two sepa-
rate {or also the same) populations {at the same time
period) change as the distance between populations
increases, for a wide range of situations. He further
showed exactly how these probabilities of IBD are re-
lated 10 coalescence or gametic kinship chains. Al
though it is not pursued in great detail in the present
article, an analogous but somewhat more complicated
relationship exists between space-time probabilities of
IBD and space-time coalescence between two genes
(separated in time as well as space). We indicate how
coalescence analogs of the present general models may
be derived from them and hence may be calculated for
specific cases. :

in this article, we first develop definitions for space-

time' probabilities of IBD and determine fundamental.

linkages among them as functions of time and space,
and methods of calculating them, for completely gen-
eral migration processes. We briefly consider the case of
a single population and then develop further theoretical
results for isotropic, but otherwise general, models, We

also develop the Fourier transform of space-time proba-
bilities of IBD in an arpeNDIX. Finally, we develop more
explicit results for isotropic migration in systems with
only one spatial dimension as examples to itlustrate
some of the paramount features.

RESULTS

General formulation of space-time probabilities of
identity by descent and their relationships to spatial
probabilities of identity by descent: [t is assumed that
there is a well-ordered array of populations located in
multidimensional space. Each population has N diploid
individuals undergoing WRIGHT'S (1965) modet of life
cycle (migration and mutation of gametes, then genetic
drift) with, for sake of simplicity, random mating within

“each population. The latter condition can be refaxed

and in some instances does not complicate the situation
much (MaLEcoTt 1975). Initially, no assumptions need
be made about the rates of migration between popula-
tions, and thus we may include situations usually re-
ferred to as anisotropic. It is assumed only that there
are finite numbers of populations that exchange mi-
grants with any given population over one unit of dis-
crete time, hereafter referred to as a generation. The
natural definition of space-time probabilities of IBD,
denoted §,,(w, x}, is the probability that two genes are
IBD, where one gene, [, is selected at random from a
population at generation n -~ b at location w (where w
is a vector of coordinates locating the population}, and
the other, I, is selected at random from a population
at the present generation nand located at x. For future
reference, the probabilities that the same two genes
coalesced 5 generations prior {time forward) ton — b
can be denoted w,,,(w, ¥, and sometimes it is conve-
nient to consider “coalescence” events that occur be-
tween generatons n and n — b {time backward). [Note
that this means that, looking backward from generation
n, generation n — & — s (s < 0) saw the “first” gene that
is a direct ancestor of the two genes I and T3

Let {{w, z) be the (time forward) rate of migration
from w to z that occurs over one generation. Note that
for the purely spatial probabilities of IBD (6= 0) &,4(w,
x) = q)il.o(xi w)

Let us first consider the space-time probabilities of
IBD for a single generation time lag (ie. 0= 1), ¢ui(w,
x). We ignore mutation for the moment, which implies
thatdescendence corresponds to IBD oridentity in state
(MaLEcoT 1975). To construct $,,(w, x), we may con-

. sider three separate probabilities of the ways that I and
T may be IBD:

1. Probability that [ is directly descended from T in
which case it is necessarily identical by descent, This -
is simply the probability that the previous generation’

- ancestor of [ came from population w, {(w, x), times
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the probability that the gene was in fact T, ie, 1/2N.
Thus this probability is Kw, x}/2N.

2. Probability that ['* is not directly descended from T,
but is descended from another individual gene in
population w, and the latter gene is IBD with T
This is the product of two probabilities. The first
probability is that I is not directly descended from
I but is descended from an individual gene in popu-
lation w, and in the specific case where all popula-
tions have the same size this is equal o (zv, x)(1 —
1/2N). Conditional on this, the probability that this
gene is IBD with T is simply the within-population
probability of IBD at that generation {n— 1), hence
,-10{ze, w), which we may also call §,..,,(0), or more
simply ¢,-.(0), because they are the same for all
populations.

3. Probability that I'* is not directly descended from w
(i.e., it is descended from some other population, 7)
but is nonetheless IBD with I', ¢,.i0{w, £). To get
this, we must sumn over all possible migrations from
populations other than w; hence this probability is
equal to

E_L'(Z, X @0y 7). ()
Thus we have the equation

L r)l(w’ K)o, 1w}

1
dufw, x) = é:"\"rl(w, X+ (1 a

+ 2 Uz W)l 7). (2)

The space-time probabilities of IBD with time lag
one are linear functions of the spatial probabilities
of [RD. Hence the stationarity or equilibrium (as n
goes 10 infinity) conditions are the same as those for
spatial IBDs. If we include a recall coefficient, 1.0 >
k > 0, which is most interesting when it represents
mutation rates either in the infinite sites {(wherein
the @'s represent probabilities that two nonrecombin-
ing haplotypes have no sites that differ) or infinite
alletes mutation models, then the spatial probabili-
ties of IBD reach equilibrium (Martcor 1975). At
equilibrium, the generation subscripts (n) may be
omitted:

G (w, x) = ;Rri(w, O -k
N (R 19
(1 Yy (w. x) (1 — K)de(D)

i

+ 21(; (1 — Bdolu, z). (3)

Development of general equations for higher tempo-
ral order time lags may be illustrated by first examining
the second temporal order probabilities of IBD. In es-
sence, the development follows that for the temporal
order one case, except that we must consider all possible

paths of migration in the intervening generation(s).
There are three components:

1. Probability that I'* is directly descended from I" and
hence is identical by descent

%\}};z(w, DUz, %), @)
2. Probability that I is not directly descended from I,

but is descended from an individual gene in popula-
tion w, and the latter gene is IBD with T":

(i - ;2—13[) };“w’ Z) [(Z. x)¢n~2.0(wa w) (5)

3. Probability that I'" is not directly descended from w,
but is nonetheless IBD with T

2 Guenalm, 2y 2 Uz p) Uy, x). (6)

w ¥y

Thus, ¢.s(w, x) equals
é%,?ﬂw, z)i(z ) + (1 - 2—1&)2 e, 2) Uz, %) Pn—n0(0)
+ 2@;.-—2.{1(“’: x) Ef(z, )’)l()’r x (7N
e y

and

1
[Dn.'.‘(w» x) = ﬁgl(wt Z) [(Z, x}(l - (buﬁ?.ﬁ(o))
+ T hannliw, 2) 2z Py, x).  (B)
r ¥

At equilibrium, when mutation is included,

G, ¥) = (1 ~ k)* Ek,zf(w. 2) iz, x) (1 — $,(0)}

+ 2 ou(w, 2 2 Uz p) iy, 2.
T . -r
)]

For temporal lags greater than two time periods, it is
possible to construct similar equations by summing over
all paths of migrations during intervening time periods.
However, the equations become complex and there is
a simpler way of expressing space-time probabilities of
IBD in terms of those with the next shortest time lag,
b. This makes use of the fact that the condition of IBD

“for §, (w, x), for genes in a population w at time 'n —

b (b lags in the past), requires that the gemes must also
be IBD somewhere, z (for all z), at time n — 1 (one lag
in the past). The value of ¢, 4{(w, x) is the sum of the
$u11{w, z) 1imes the probability that such genes in x
at time n descended from z in the previous generation,
i.e., the migration rate. Hence, for 6> 1. '

buslew, ©) = DUz D0-rim (2. Qo

This is also shown by induction in APPENDIX a. For the -
case of equilibrium with kgreater than zero, this reduces
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to -

O, x) = (1 — k) 2 Uz )P, z). (A1)

Thus all of the space-time probabilities of IBD can be
obtained from the spatial probabilities of identity by
using Equation 8 (or 9 in the case of equilibrium) and
then iterating Equations 10 {or 11).

Special case of a single population: In the case of a
single population we may consider the probabiiity, $..,
that a gene, I'", selected at random at generation n, is
IBD {barring mutation for the moment), wi th another
gene, I, which is selected at random from the popula-
tion at generation n — & For b= 1, the probability that
I’ is directly descended from I’ {and hence is ako IBD)
is simply 1/2N. The probability that it is not directly
descended from but is nonetheless IBD is (1 — 1/2N)
$,10- Hence §,, = 1/2N + (1 - 1/2N) &,-10. Rather
than go through the iterative process, we make use of
the fact that because there isasingle poputation, [ must
be descended from either I' (with probability 1/2N) or
elsewhere in the population. Hence we have the simple
result: 9., = 1/2N + (1 - 1/2NY g, - o I mutation is
included, then

¢n.b = (1 - k)b[é‘!‘n\}-&. (1 - 1 )¢r|-b.l)}~ (12)

oN
At equilibrium,

sy ol L _ L
¢ = k)a{2w+(l 24)%}‘ (13)

For large & and N and small k,
¢,‘, == e—th)g. (14:)

Case of multiple populations with arbitrary dimen-
sionality but with isotropic migrations and at equilib-
rium: In the case of isotropic migration rates (where
migration rates are the same for spatial lags for each of
two directions within a dimension but may differ be-
tween dimensions), it is convenient to use spatial lags
rather than absolute locations of populations and to
assume that the populations either extend infinitely in
all dimensions or are supported by a multidimensional
torus (MarLgcoT 1975). In this section, we also assume
equilibrium with mutation. Let {(y) be the migration
rate from a population at w o a population at w + y,
and let ¢,(y) be the probability of IBD between I and
[ at two different populations separated by # genera-
tions in time and by spatial lags in the vector y in space.
Translation of Equation 3 and factoring (1 ~ k) gives

= - pll L
oy = {1 k){gNl(y) + (1 ‘.’.\’) Hy)6u(0)

+ 2 UDeuly - z)} (15)
]

or equivalently

e R L1
a0y = (1 &{%QU)+(1 mJtumum

+ % Uy - »1)%(1)} (16}
or
= - g -
iy = (1 k){izN(l ${0))
+2m~nm4.<w}
Similarly,

o5y = (1 — k) 2Ly — 29—1(2) (18)

or equivalently
() = (1 — & ZUDG(y ~ 7). {19}

Thus,
¢ly) = (1 — R)?

2ly -2 {gf\l, (1~ ut0))+ X Ux)olz — y)} (20

&) = (1 — &)°
. _ L) P
%Nw yﬂguy I%ZNU $(0))

+ 2 Ux)golz — y)}}- 20

It is easy to see that in general ¢,y =

(1 - k)bE l()’b - y.s—n)Ef(J’H - yb-‘.')» o 2[()’3 - ¥}
Fy—n ¥

-1

: El(y:’ - z){%:%(l -~ §y(0)) + El(x)%(z - ¥ (22}_
Thus the space-time probabilities of IBD can be deter-
mined from the spatial probabilities of IBD using Equa-
tion 22.

Case of multiple populations with one spatial dimen-
sion but with isotropic migrations and at equilibrium;
The case of populations located along a single dimen-
sion illustrates several aspects of the space-time probabil-
ities of [BD. In this case each spatial index is an integer,
nota vector. Using Fourier transforms, MavgcoT (1972)
showed that in the infinite system case (or effectively
so for a large torus), the spatial probabilities of IBD are
approximately related by

) oy Yy . ‘ B
Po(x) = ¢’u(_0) (1 - g*"f‘“)n _ (23) :

where o is the variance in the distance of migration. A
continuous approxima[ion forlarge distances of separa-,

fionis
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Golx) = du(0) e, (24)
MavEcoT (1972) also showed that
i
$o(0) = " (25)

4NoVOR + 1

Development of the Fourier transforms of the space-
time probabilities of IBD for the one~limension case is
presented in APPENDIX B and can be used for obtaining
analytic results on the space-time probabilities of IBD.

For the special case of the strict stepping-stone model,
o = 9m, where mis the migration rate between adjacent
populations, so that

to() = B0} (1 — Vh/m)* (26)
(0) = = @7
letting ¢o{0) = @ and
g = (1~ Vi/m) (28)
we have ¢o(y) = ag’. For y # —1,0,0rl,
o3 = (1 — B Im(galy + DH &y — 1)
+ (1 = 2m)do{y}} (29)
() = (1 — & {mag™ + ag™") + {1 = 2m) ag’)
(30)

= (1 — kag™ img +m+ (1~ 2my gl (31)

Letting ¢ = mg’ + m + (1 — 2m)g, we have dy(y) = (1~
k) acg'™". Using this and Equation 11, and for ~2 >y,
or y > 2, we have ¢u{y) = (1 ~ k)? ac? g™*. Iterating
Equation 11, we have for —6> y or y > b, the simple
relationship ¢,(y) = (1 — k)* ac’gr*, This indicates that
for populations where direct descendence is not possi-
ble among the two populations (separated by bin time
_and yinspace and — 4> y,ory> b) in the strict stepping-
stone model, the space-time probabilities of IBI) expo-
nentially decrease with spatial distance.
Fory= —lorl,
m

iy = (L ~ &) lES’H —~ $:(0))
+ m{gy(y + 1)

+do(y — 1)) + (1 — 2m)da(y)y.
(32)
Fory = 0,

o) = (1 — k){

1~ 2m
EAY

+ gy + 1)

(= ¢o(0)

+ ooy — 1) + (1~ 2m) (¥ |-

(33)

Examples that capture many of the salient features of
space-time probabilities of IBD for isotropic migration
processes are shown for strict stepping-stone equilib-
rium models with one spatial dimension in Tables 1-4.
These were calculated using Equations 31, 32, and 33
in conjunction with Equation 11. Calculations were first
done assuming 40,000 populations to avoid any possible
edge effects, but the same numbers occurred for caleula-
tions using 400 populations, Computations for 400 pop-
ulations for 10,000 generations used ~5 sec of CPU on
a Sun Microsystems Sparcstation 20. The key features
are: (1) the degree to which the probabilities do not
decrease smoothly in time or space; (2) the degree to
which the function over space may become more flat
as time lag increases; and (3) the general effects of the
parameters. Population size, N, affects all space-time
probabilities of IBD in exactly the same way. Precisely,
as is clear in the Fourier transform in ApPENDIX B (Equa-
tion B19), the probability of IBD within a population,
¢o(0), decreases linearly with N, and all of the space-
time probabilities decrease by (1 — §(0))/2N, so that
the relative values of the ¢,(y) (for b and y not equal to
zero) are unaffected by N. For the models shown in
Tables 14, an arbitrary but small population size (N =
100} was used to better show the effects of the other
parameters, the rates of migration and mutation. Of
course, for larger migration rates the purely spatial prob-
abilities of IBD are smaller for short distances, but they
also decrease more slowly as distance increases (MALE-
cot 1975). Itis worth pointing out that higher migration
rates, m, imply less “information” in terms of purely
spatial patterns, because these cause more distant popu-
lations to be less different relative to nearby populations.
Also obvious is that as & (eg, mutation rate) increases
the spatial correlations are generally smaller, but it is
noteworthy that the decrease with distance becomes
sharper. That is, local sharing of stochastic effects of
drift among nearby populations is relatively suronger
when stronger force is acting in the direction of homog-
enizing the entire system of populations.

For short tme lags, particularly for time lag t the
probabilities of IBD for spatial lags 0 or 21 may actually
be greater than §,(0}, especially if the mutation rate is
not too large. The effect increases as the migration rate
increases. Similarly, the probabilities of the tpe 6,{0)
tend to decrease rapidly as migration raie increases.
Naturally the larger the value of k, the faster the de-
creases with time lag, generally, However, for some com-
binations of migration rate and A small increases in
probabilities of IBD can occur from bto b+ } even at
large spatial and temporal lags. .

For long temporal lags, there can be remarkable “flat-

_ tening” of the pr'_obuhilit'ies'ofIBD function on clistance,
_especially when  mutation and migration are both
strong. Nonetheless, itis also remarkable that the curves

are relatively flat only up to 10 to 100 distance units in
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TABLE 1

Space-time probabilities of identity by descent for the isotropic strict stepping-stone model, with migration rate
m = 0.I and mutation rate k = 10~* and population size arbitrarily set at N = 100

Distance lag y

Time lag 6 0 1 p 3 4 5 10 40 70 100 3,000 10,000
0 07981 07936 0.7931  0.7905 0.7880 0.7836 0.7732 07031 0.6304 05814 00336  0.0000

1 0.7984 0.7957 07931  0.7905 0.7880 0.7836 0.7732 07031 0.6394 05814 00336 0.0000

2 07970 0.7957 07931  0.7905 0.7880 07856 0.7732 07031 0.6394 03814 00336  0.0000

3 07974 07956 07931 07905 0.7880 07856 0.7732 07031 0.6394 05814 00336  0.0000

4 07971 0.7956  0.7931  0.7906 0.7880 07856 0.7732 0.7031 0.634 03814 00336  0.0000

5 07968 0.7935 07931 0.7906 0.7880 0.7856 07732 07031 06394 05814 00336 0.0000

10 07937 07949 0.7920 07905 0.7880 0.7836 0.7732 07031 06304 05814 00336  0.0000

100 0.7802 0.7890 0.7883 07873 0.7858 07841 0.7731 07031 0.6394 05814 0.0336  0.0000
1000 0.7696  0.7696 0.7694 07690 0.7686 07680 0.7632 0.7031 0.6394 05814 0.0336  0.0000
10,000 07082  0.7082 07082 O.70B1  0.7079 07078  0.7064 0.6804 0.6338 0.5805 0.0336  0.0000

most realistic scenarios. Still this may be a substantial
distance.

For the space-time coalescence probabilities, the 7 is
not necessary so long as we are careful not to exceed n
generations going backward in time and equilibrium is
sufficient but not necessary in this regard. We derived
equations anatogous to Equations 3, 9, and 11 for ¢, for
example, the following (for s > 13

() = 25U U (Y + 2~ %)
C — SHDUy + D (0)/2N (34)

and {fors= 1)

iy = ZI(z)l(y + z) /2N, (35)

The exact same equations are found for the coalescence
probabilities for two sampled genes separated in space
but not time (MaLEcoT 1973}, so that the equation
holds for all b > 0. However, we note that for s = 0 the

value is not 0 as it is by definition in the purely spatial
case. Because we can choose any b, we can iterate these
equations from the initial time lag of 0. Thus it is possi-
ble to determine the theoretical spatial and space-time
coalescence times for general systems and to conduct
coalescence analysis of data collected from different
time periods. It can also be shown that

n-¥
duln, y) = 2}(1 = RYUm,(y) (36)

Note the summation includes s = 0 {probability that I
is a direct descendent of ).

DISCUSSION

The mathematical relationships developed in this arti-
cle demonstrate that the probabilities (¢,(y)) of 1BD
between genes separated by time lags (8) as well as
distance lags (y) in space are (usually complex) linear
functions of the spatial probabilities of IBD for general

TABLE 2

Space-time probabilities of identity by descent for the isotropic strict stepping-stone model, with migration rate
m = 0.01 and mutation rate ¥ = 107° and population size arbitrarily set at N = 100

Distance lag ¥

Time lag & 0 1 2 3 4 5 11y 40 0 100

1.000

10,000
0 00958 09167 09075 08984 08804 08805 0.8374 06194 04582  0.3389 0.0000  0.0000
1 09961 09167 00075 08984  0.8804 0.8505 0.8374 06194 04382 0.3389 G.0000 . 0.0000
2 09259 0.9167 09075 08984 0.8894 0.8805 0.8374 06194 04582 0.3389  0.0000  0.0000
3 00257 09167 09075 0.8084 08894 0.8805 0.8374 0.6194  0.4582 0.3389° 0.0006  0.0000
4 09255 09167  0.9075 08984 0.8894 0.8805 0.8374 06194 0.4382. 0.3380  0.0000  0.0000
5 09254 0.9167 09075 08984 0.8804 0.8805 0.8374 0.6194  0.4582  0.3339  0.0000°  0.0000 e
i 09945  0.0166 09075 0898+ 0.8894 0.8805 0.8374 0.6194 04582 0.338Y 0.0000 00000
100 00163 09134 009067 0.8982 0.8804 - 0.8805 0.8374 0.6194 04382 0.3389 0.0000 0.0000
1,000 0.8930° 0.8992  (.8809 08861 0.8811 0.8751  0.8370 06194 - 04582 0.3389 0.0000  0.0000
10,000 08195 0.8180 08160 0.8006 “0.6193 04382 03390 0.0000 0.0000

0.8214 0.8212 0.8208
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. TABLE 3
E
Space-time probabiiities of identity by descent for the isotropic strict stepping-stone model, with migration rate
m = 0.1 and mutation rate k = 1¢7* and population size arbitrarily set at N = 100
Distance lag ¥
Time lag b 0 1 b 3 4 5 i 40 0 100 1000 10,000
0 0.983%  0.2743 02657 02573 0.2401  0.2413  0.203¢  0.0783 0.0299 00114 00000  0.0060
1 02843  .2747 02657 02573 02491 02413 (0.2034  0.0783 00209  .0114 00000 00000
, 2 0.2894 02747  0.2657 02573 02491 02413 0.2054  0.0783 00209 00114 0.0000 00000
3 09808 02746 0.2657  G.2573  0.2491  0.2413 062054 0.0783  0.0299 0.0114  0.0000  0.0000
4 0.9796 02743  0.2657 02573 0.2491  0.2413 02054 00783  0.0299 0.0114 00060 00000
5 1.2785 02730 0.2657  0.8573  0.2491  0.2413  0.205¢4  0.0783 0.0299 60114 00000  0.0000
10 00747 02719 02652 02572 0.2491  (.2413  0.2065 0.078%  0.0299 0.0114  0.0000  0.0000
100 0.2515 02508 02488 09456 02413 (0.2362 02052 0.078%  (.0209 00114 (L0000 00000
1.000 01847 01845 01842 01835 01826 01814 01718 00784 0.0300 0.0114  0.0000  0.6060
10,000 00441 00441 00441 00441 0.0440  0.0439 00434 0.0342  0.0207 00101 0.0000  0.0000

migration models with arbitrary numbers of spatial di-
mensions, with isotropic or anisotropic migration, at
equilibrium or not. Equations were generated that can
be iterated so that the space-time probabilities of IBD
can be calculated from the spatial probabilities of IBD,
again for the same range of general models. In ali of
these systems the effects of number of individuals within
populations, N, are simple. The probabilities of IBD
within the same population at the same time and the
purely spatial probabilities of [BD decrease linearly with
N {eg, MavrfcoT 1975), and arreENDIX Equation B19
shows that the space-lime probabilities also decrease
with N. Moreover, we would expect, although did not
show, that varintion of Namong populations would have
little effect, as is the case for spatial correlations of allele
frequencies (BonseRr and CavarLs-Srorza 1968). The-
orv for purely spatiai probabilities of IBD has already
been developed for equilibrium and nonequilibrium
general models by MavtcoT (1948, 1972, 1973, 1975)
andl athers, and these can also be related to coalescence
events between pairs of genes or gametic kinship chains

{MaLEcOT 1975). Malécot developed analytical expres-
sions for spatial probabilities of IBD for isotropic migra-
tion models but not for anisotropic models, which com-
plicates the Fourier transform, but in principle this
should be possible. We focused on using isotropic equi-
librium models as examples to illustrate some key fea-
tures of the space-time probabilities of IBD and as an
example of their Fourier transforms (which can also be
found for isotropic nonequilibrium systems for space-
time as well as spatial probabilities of IBD).

Several fundamental features of space-time probabili-
ties of IBD were illustrated using the equilibrium one-
dimensional strict stepping-stone migration process, for
which the purely spatial probabilities have the simpte
form of an exponential decrease with distance of spatial
separation. First, for relatively short time lags, the proba-
bilities of IBD for relatively small distances can exhibit
complex behavior, which would nat necessarily be ex-
pected from consideration of purely spatial pauerns.
Probabilities of IBD for two genes existing at ditferent
generations but within the same population or between

TABLE 4

Space-time probabilities of identity by descent for the isotropic strict stepping-stone model, with migration rate
m = (.01 and mutation rate k = 107% and population size arbitrarily set at N =100

Distance lag v

Time lag & D i p g 4 5 10 40 70 100 1.000 10,000
0 05556 05000 04500 04050  0.3643 0.3281 01937 0.0082 00003  0.0000 00000 0.0000

1 05566 05000 04500 04050 0.3645 03281 01937 0.0082 00003  0.0000 0.0000  0.0000

] 05534 05000 04500 04050 0.3645 03281 01937 0.0082 0.0003  0.0000  0.0060 . 0.0000

3 03342 03000 04500 04050 0.3645 03281 (1937 0.0082 0.0003  0.0000 00000 0.0000

4 05531 03000 04300 04030 0.3643 0.3281 0.1937 00082 0.0003 00000 0.0000 00000

5 05320, 05000 04500 04050 0.3645 03981 01937 00082 0.0003 °0.0000 - 0.0000  0,0000-

16 05467 04998 04500 04050 0.3645 0.3281 01937 (.0082 . 00003  0.0000  0.0000  0.0000
106 04955 04802 0.4432 . 04043  0.3647 0.3284 01939 . 0.0082 0.0003.. 0.0000 0.0000 . 0.0000
1000 03304 035366 0.5485 03357 03190 02995 01937 0.0083 0.0004 00000 0.0000. . 0.0600
10,000 0.0846 © 0.0845 0.0841 - 00834 0.0824 00812 00719 00087 00004  0.0000 - 0.0000  0.0000
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two nearby populations may actually increase as the time
lag increases. Such effects are greater when mutation
rates are higher and are slightly increased (for very
short time periods) when migration rates are higher.
Naturally, mutation tends to decrease overall probabili-
ties of IBD and low migration rates tend to increase
short distance probabilities of IBD. For the purely spatial
probabilities, they drop off more sharply with distance
when there are higher mutation rates or when there
are lower migration rates.

For longer time lags, b, even when there are sharp
declines in purely spatial probabilities. of IBD (as dis-
tance increases), which occur particularly when muta-
tion rates are high and migration rates are low, there
can be a remarkable degree of “flatness” when & in-
creases. That is, looking at ancient generations, IBD
decreases much more slowly with geographic or spatial
distance. Such effects are greatest when migration rates
are high, as would be expected. The same also occurs in
space-time correlations in allele frequencies (EPPERSON
1993b). This means that if we consider a gene at the
present generation at a particular geographic location,
its ancestors are essentially just as likely to have been
from populations within such a range of distances as
from that location itself. For example, with a migration
rate, m, of 10% and a per sequence mutation rate, k, of
10-% (Table 1) a population located 100 times more
distant than the average distance between adjacent pop-
ulations is stitl ~82% as likely 1o share identity as is an
ancient gene in the same population (location) itself,
for genes from 10,000 generations ago. For another
example, with m = 0.10 and &k = 10t (Table 3), at the
same generation the value at spatial lag 100, 9, (100)
(0.0114) is only 4% as large as at the origin, ¢,(0}
(0.2833), whereas for 10,000 generations ago,
Gromo(100) (0.0101) is 23% as large as ¢1o00(0) (0.0441).
It may be expected that a system of populations existing
in two dimensions would show even greater flatness, as is
the case for space-time correlations of gene frequencies
(EppErsoN 1993b). Moreover, anisotropic migration
could cause distant populations to be more likely than
the same {or very nearby) populations to be the ances-
tral source of present variants (EpPERSON 1993b}. Theo-
retical analyses of space-time probabilities of IBD thus
can also provide a means for determining the degree of
certainty that may be placed on the historic geographic

. origins of molecular genetic polymorphisms.

Finally, this article developed coalescence probabili-
ties for wo genes in samples separated in time as well
space. Thus the coalescent can be extended to ancient
DNA, and, for example, an ancient DNA sample could
be placed in a gene genealogy réconstruction using the
coalescent. '

I thank o snorymous reviewers for hetpful comments on an
earlier version of the manuseript. This research was supported in
part by granes frem McIntire-Stennis and the Michigan Agriculwural
Expériment Station. : i :
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APPENDIX A

To demonstrate the validity of Equation 10 in the
text consider the equation for §...(w, ¥},

d)n.‘.!(wl x) = El(k: x)q)u'-i.l(w! k)’ (Al)
. =~ :
and text Equation 2,
' 1 !
Orera B) = g 0 B) (1 - "5;;)“‘”'_ k),-20(0)

+ 3 Uz B (e, 2. (A)

W

.Substitﬁting the right-hand side of Equation A2 for

&,-1:(w, k) in Equation Al produces
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_ 1 1
Goo(w, x) = gl{k, x)[a\? Iw, k) + (1 - EX’)[(:U’ 3]

: (bn‘"?.l)(o) + El{z' k)‘bu—&ﬂ(luy Z)}

(A3)

The simplest way to show the correspondence of this
equation to text Equations 7 or 8 is to multiply through
the brackets and compare term by term. The first term
in Equation A3 is, substituting the dummy variable z
for k,

}a:l.'(z, x)é\":' Hw, 2), (Ad)

which is a rearrangement of the first term in text Equa-
tion 7. The same rearrangement of the second term in
(A3) is

wL)t( 0, 2)0a-20(0) (A3)

gl(z, x)(l Ty

and this clearly equals the second term of Equation 7.
For the third term we first interchange the summation
signs, giving

2 hu-2olw, Z)%I(Z- kY[R, %), (A6)

Substituting y for k yields the third term of Equation 7.
Thus Equations A3 and 7 are equivalent. Because the
higher-order lags (>2) involve the same types of terms,
it follows that Equation 10 is true by induction. Of
course, the analog of Equation 11 is true also when
there is mutation and the equilibrium is obtained.

APPENDIX B

As an example, we develop the Fourier transform for
the case of isotropic migration, equilibrium, and one
spatial dimension. The Fourier transform is F = Z,a’f(3y),
where o = ¢, and let us define K(a) as

K@) = F(ou(3)) = 2eiu(y). (B1)

Applying the transform to both sides of text Equation
17, we have

A0)

'2N(I ~ $4(0))

K(a) = (1 = &) | 2o

+ ESamwilly - 9o(a)).  (BY)

Defining [{a) = I, o' i(3) and recognizing the rejation-
ship of the products of Fourier transforms of two func-
tions to the convolution of two functions and that we
can interchange the order of the summations in the
second term lead to '

Kie) = (1 ~ k){i‘(ﬁ’—i&ﬂ@l + L) Ky(er) .

(B3)
MavLEcoT (1972) showed that

A 0(0)) (L~ APL{e) L(l /o)
ON b~ (1 — BL(a}L{1 /)

(B4)

Ey(w)

To simplify the exposition, let @ = (1 ~ §{0))/2N, and
thus

a(l - BL{e)L{1/a) ] (B3}

1= (1~ & L(e)L{1/a)

(1 - k)?'lv(a)[‘{l/ﬂ) ] (Bﬁ)
1= (1 — B Lla)L{}/a}

Ki{a) = (1 ~ k)l.(cx)[a +

={] - k)L(u)n{l +

= (1 — hl({a)a

,[1 = (1~ W) L{1/e) + ) - k)?uu)m/a)]
- {1~ B Lia} {1 /a) ’
(B7)

Thus,

(1~ kB L{u)a
- (1 = L L{1/a)

Ki(o) = (B8)

Similarly, transforming text Equation 18 for § > 1 gives
Ki{o) = (1 — &) L{a) Kimy(a). (B9)
Thus, for b= 2,

Al ~ kl{a)e
{1 = B)EL{o) L(1 /)

Kyfa) = (1 — k)L(a)l

{B1G}
or
(1 = &L {x)a
2 = , . Bil
Kaled 1= (1~ B LL(1/a) ( )
Repeating this process, we see that for =1,
o By ETE
(1 - kN a)a (B12)

Rl = I T L@ L)
It is possible to obtain some analytical solutions for '
the value of §,(y) as a function of yand b by taking the
inverse of the Fourier transform. Indeed, the inversion
involves the same roots as in the purely spatial case
because the denominator is the same. That is, we need
only consider the singularities as the denominator goes
to zero. We use an approach similar to the residue -
theorem. We let H(o) = L{a)}L(}1/a) and recognize
that we need only consider the singularity where
H{a) = 1/(1 — k)* (because we have agsumed that &k >
0}, which we set equal to I + k. We need consider only
the poles o; and oy = 1/a,, which are very close to 1.0.
Using the inversion formula of MaLicor (1972),
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Kfa) = X —1— (B13)
=tz T
and
e _._1-.—- ..gj:i{.&l. A~ oA .
0, ngﬁa ot @19
where
A = 1o — ) Kye) (B15)
g — .3
A= a(1 — pplim__ (@ =)L) (B16)

a~ai] — (1 — K L) LA/ a)

Because both the numerator and the denominator go
to zero in the limit, we can use I'Hopital’s rule,

sHm (d/de) (o ~ o) L)
aay g/ da}{l — (1 — B)2L(a) L{1/a)]

Ay = a(l — k)

{B17)
or

4, = _ aalim Loy + (0 — o, Y bL (o) L Ha)
Az el T e —(1 - BH () ‘

{B18)

Maricor (1972) showed that H'{a;) = 20 o, — 1) +
ol — 1} = 90k, + o(4k/c?), where ¢¥ is the variance
in the distance of migration. When k is small, H' () =
~9202k. Taking the limit, and substituting back for a
and putting this altogether, we have

o L] — El Pt
oty = LR wmumb“%q (B19)

ANoV2k

Itis of interest to take the Taylor series expansion of L'(a;)
about 1.0z

3
Poy = 21y + ER e - 1)
doe;
L LW (= )
d')C(l 21

: + olay ~ DY (B20)

It is easy to show that [*(1) = L0, and that dIA 1Y/ doty =
4 (for b= 1), where {is the average movement of gene
migration. In the isotropic case, ! is zero. Also in the
isotropic case the value of &A1Y/ dey = kot Thus,

+ ?giggw‘___ 1)

L ey) o + ooty ~ 1)?

i

1

= ] A et {(B21)
The first two terms of Equation B21 provide a good
approximation if k is very small compared to ¢ and
1/b (the latter is required because higher terms of the
Taylor series may involve higher powers of 8). Under
these conditions the following approximation is good:
[Ha) = | ~ bo*((V2k)/20)? = | + bk Note also that
when # is large the probability of IBD decreases essen-
tially exponentially with the time lag as well as with
distance of separation.

Fourier transform methods can be developed for
space-time probabilities of IBD for systems with two or
more spatial dimensions, although the notation be-
comes more complicated.




