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ABSTRACT

Population genetics theory has dealt only with fl_e spatial or geog_wtlic pattern of degrees of relatedness

or genetic similari W separ_tely for each point in time. However, a frequent goal of experimental stuclies

is to infer mignuion patterns that occurred in the past or over e xtended periods of time. To thlly understand

how a present geographic pattern of genetic _-ariation reflects one in the past, it is necessaly to build

genealogy models that directly relate the two. For the first t me, space-t ne probabilities of identity by __
descent and coalescence probabifties are formulated and characterized in this article. Formulations fcrr

general migration processes are developed and applied to Slleciiic types of systems. The results can be _
,_ used to determine the level of certainty that genes found in present populations are descended from .

_-.,. ancient genes in the same poptflation or nearby populations vs. geographically distant populations. Some
parameter combinations result in past populations that are quite distant geographically being essentially
as likely to contain ancestors of genes at a given population as the past population located at the same
place. This has implications for the geographic point of origin of ancesmti, "Eve," genes. The results also
form the first model for emerging "space-time" molecular genetic data.

UNDERSTANI)ING how genetic lineages trace elude degree of differences among genes (e.g., DNAthrough time and space has long been a central sequences) under the infinite sites models or to gene
concern of population genetics theory,. Stochastic rood- frequency data under infinite alleles models, as well as
els of the spatial or geographic structure atnong popula- to processes under other mutation models (MALI_COT

tions in terms of levels of inbreeding (WRIGHT 1943) 1975). In this article we take a first step in the develop-

or probabilities of identity by descent (IBD; MAL£COT merit of measures that more fully describe spatial-tem-
1948)_ and more recently coalescer_ce theory (I_NGMAN poral genealogical processes by extending measures of

1982), underpin such processes. Although much of pop- the probability of IBD to time as well as space or geogra-
ulation genetics tlteou since Wright and Mal6cot has phy. That is, we develop space-time probabilities of IBD
tocused on measures based on gene frequencies, recent as measures of the degree ofstlared ancestry, or alterna-
availabili W of information on the degree of differences tively similarity, among genes separated in time as well
among genes, which is obtained with many modern as space. Additional insights are gained into the nature
molecular techniques, has sthnulated much of the re- of genealogical processes in structured populations,
cent modeling efforts. With respect to geographical ge- Various methods of estimating probabilities of IBD
netics, the original theoretical works of Wright and based on genetic data have been established. For de-
Mal6cot and all works since have focused on describing cades various approximate estimators have been devel-

thegeographicorspatialpatternsofgeneticvariationat oped (e.g., MORTON 1969), although it turns out that
the present time or some other point in time. MALi;COT approximations involving system mean gene frequen-
t1946) developed the probability of IBD interpretation cies are not necessary (G. MAt,i:COT, personal cotrtmuni-
and applied it to geographical genetics (MAL_COT cation . In any case, it is possible to use the sample
1948 . These are probabilities that genealogical lines of (observed) genetic identities to estimate values ofproba-
descent occur, with nlutations superimposed. Mal_cot bilities of IBD and hence migration and other parame-
also developed what he termed "les chaines de parent6 ters (e.g,, RANNALAt996).
gametique" (MALr_COT195(3. 19731 or probabilities of The significance of further understanding of space-
"gametic kinship chains" (e.g., MALe:COT 1975). which ume processes lies in part in the fact that we often want
are the same as the probabilities of coalescences be- to understand historical migrational processes. There is
nveen pairsofgenes (e.g.. I-IUDSON1990). Thisprobabil- considerable interest in the geographic origins of ge-
tty approach can be applied both to measures that in- netie polymorphisms and in the origins and spread of

populations. Recent examples include the use of molec-
ular data to infer origins of ALU polymorpbislrtS in
humans and the geographic origins of "modern" hu-
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798 B. K- Epperson

graphical patterns of molecular variation. However, to also develop the Fourier transfornt of space-time proba-

fully understand the significance of present relation- bilities oflBD in an A]'PENfnx. Finally. we develop more

ships to historical migrational processes we must charac- explicit results for isotropic migration in systems with

terize the direct relationship of present genes to genes only one spatial dimension as examples to illustrate
in the past located in the same and different popnla- some of the paramount features.

tions. It may seem a safe assumption that trader most

circumstances a given gene at the present time is most
closely related to the past or ancient genes in the same RESULTS

population; however, the given gene may also be very
closely related to ancient genes in other populations, General formulation of space-time probabilities of

perhaps in some cases quite distant geographically, identity by descent and their relationships to spatial

Analysis of space-time probabilities allows examinadon probabilities of identity by descent: It is assumed that
there is a well-ordered array of populations located inof this. Not only might high probabilities extend for

considerable distances, they seemingly could even vic- multidimensional space. Each population has Ndiploid
late tile above assumption if migration rates dirtier individuals nmiergoing WRIC.nT'S (1965)model of fife

among directions, i.e., anisotropy (EPeE_soy 1993a,b). cycle (migration and mutation of gametes, then genetic
That is, it is conceivable that genes presently found in drift) with, for sake of simplicity, random mating within

a given population may be more closely related to those each popnlation. The latter condition can be relaxed

ancient genes that were in other, perhaps quite distant, and in some instances does not complicate the situation

geographic regions, much (MALl:COT 1975). Initially, no assumptions need
Another emerging f_.'atnre of modern molecular ge- be made about the rates of migration between popula-

netics is the ability to obtain ancient DNA from mum- tions, and thus we may include situations usually re-

mies and even fossils (e.g., KRtxcs et al. 19971. and ferred to as anisotropic. It is assmned only that there

considerable genetic data are ah'eady available for vi- are finite numbers of populations that exchange mi-
ruses, such as data in the form of time series of DNA grants with any given population over one nnit of dis-

variants in different geographic regions. The methods crete time, hereafter referred to as a generation, The

in this article also model such genes separated in time natural definition of space-time probabilities of 1BD,
as well space, which is a first step in developing the denoted _,,b(w, x), is the probability that p,vo genes are

probabilistic underpinnings of analyses of space-time IBD, where one gene, F, is selected at random from a

molecular genetic data. Moreover, molecular data col- population at generation n - b at location w (where w
lected from samples spanning a much shorter time scale is a vector of coordinates locating the population), and

(even contemporaneous overlapping generations) also the other, i"', is selected at random from a population

require spatial-temporal measures, at the present generation n and located at x. For furore
MAI.f_coT (e.g., 1950, 1972, 1973, 1975) developed reference, the probabilities that the same two genes

elegant mathematical tools in characterizing the purely coalesced s generations prior (time fora_'ard) to n - b

spatial probabilities of lBD, that is, how the probabilities can be denoted rr,,.t,._(w, x), and sometimes it is torn'e-

that nvo genes randomly selected from each of two sepa- nient to consider "coalescence" events that occur be-
rate (or also the same) populations (at the same time tween generations rt and n - b/time backward), [Note

period) change as the distance between populations that this means that, looking backward from generanon

increases, for a wide range of sitt2ations. He further t_, generation n - b - s/s < 01 saw the "first" gene that
showed exactly how these probabilities of IBD are re- is a direct ancestor of the nvo genes F and F'.]
luted to coalescence or gametic kinship chains. Al- Let hze. z) be the ttime forward_ rate of migranon

though it is not pursued in great detail in the present from w m z that occurs over one generation. Note that

article, an analogons but somewhat more complicated for the purely spatial probabilities of IBD (b = 01 ¢ ,.otW.
relationship exists between space-time probabilities of x) = _,,0_x, wL

1BD and space-time coalescence between two genes Let us first consider the space-time probabilities of

(separated in time as well as space). We indicate how IBD for a single generation time tag ta.e., b = 1), ¢ ,.t(w,

coalescence analogs of the present general models may x/. We ignore mutation for the moment, which implies
be derived from them and hence rnay be calcnlated for that descendence corresponds to IBD or identity, in state
specific cases, tMAL_COT 19751 To construct O,,.t(w, x). we may con-

In this article, we first develop definitions for space- sider three separate probabilities of the wa_ that F and
drne probabilities of IBD and determine fnndalnental F' may be IBD:
linkages among them as fnnctions of time alld space.

and methods of calculating them, for col}tptetely gen- 1. Probability that F' is directly descended fron't F. m
eral migration processes. We briefly eonskler the case of which case it is necessarily kleutical by descent. This

a single population and then develop fi_rther theoretical is simply the probability that the previous generation

results for isotroplc, but othenvise general, models. We ancestor off" came from population w. g(w, x), times
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_, the probability that the gene was in fact F, i.e., 1/21\_ paths of migration in the intervening generation(s).
Thus this probability is l(w, x)/2N. There are three components:

2. Probability that F' is not directly descended from F, l. Probability that F' is directly' descended from F and
but is descended from another individual gene in bence is identical by descent:

population w, and the latter gene is IBD with F.
This is the product of two probabilities. The first -1--_l(w, z)l(z, x). (4)

probability is that I" is not directly descended from
2N'T

F but is descended from an individual gene in popu-

lation w, and in the specific case wbere all popula- 2. Probability that F' is not directly descended from F,but is descended from an individual gene in popula-
tions have the same size this is equal to l(w, x)(1 -

I/2N). Conditiona on this, the probability that this tion w, and the latter gene is IBD with F':

gene is IBD witl, F' is simply the within-population (1- ,_7_1_l(w, z)l(z, x)*___.0(w, w). (5)
probability of IBD at that generation (n - 1), hence _ Z/q/ ,
0,,-I.0(w, w), which we may a so call _,,-1.0(0) or more

simply _,,-t(0), because they are the same for all 3. Probability that F' is not directly descended from w,

populations, but is nonetheless IBD with F:
3. Probability that F' is not directly descended from w Y,_,-,,..o(w, z) Y,,t(z, y) l(y, x). (6)

(i.e., it is descended frmn some other population, z) ,_, y
but is nonetheless IBD with F, O,-_.0(w, z). To get Thus, @__(w, x) equals

• this, we must sum over all possible migrations from

popuh,t,onsotbertban  boncotb'sprohabilityis
equal to

Y.l(z, x)C_,,-_.o(w, z). (1) + _e_,,_._,dw, z) _,l(z, y)l(y, x) (7)r_w y

and
Tbus we have the equation

,,,.,(w,x) = l)_Nl(W,X) + (I - l_r)l(w,x),,,_,.o(w, w) *,:,_(w,x) =._12N_l(w,z)l(z,_ x)(1 - 0,,-,.0(0))

+ _,_°-,.,dw, z) _,l(z, y)l(y, x). (8)
+ _t(z,x)_.-_.0(w z). (2) y

=_w

At equilibrium, when mutation is included,
The space-time probabilities of 1BD with time lag

one are linear functions of the spatial probabilities __1 _l(w, z)t(z,

(

of [BD. Hence t ae stationaritv or equilibrium (as n _)._,(w,x) = (1 - k)" x) (1 - _0(0))• /2N

goes to infinity) conditions are the same as those for ]

spatial IBDs. If we inchlde a recall coefficient, 1.0 > + _o,Aw, zj Y,, l(z, y)l(y, x)l.
k > 0, which is most interesting when it represents s
mutation rates either in the infinite sites 'wherein (9)

the _'s represent probabilities that two nonrecombin- For temporal lags greater than two time periods, _t is

ing haplotypes have no sites that differl or infinite possible to construct similar equations by summing over

alleles mutation models, then the spatial probabili- all paths of migrations during intervening time periods.
ties of IBD reach equilibrium (MALI;;COT 1975t. At However. the eqnations become complex and there is

equilibrium, the generation subscripts t nl mav be a slm per way of expressing space-time probabilities of
omitted: 1BD in terms of those svith the next shortest time lag,

b. This makes use of the fact that the condition of IBD

¢_l(w, x) = 1 I(w, x)(1 - h) ['or Q,, b(w, x) for genes in a population war time n -2N
b (b lags in the past), requires that the genes nmst also

[1 - l_l(w, x)(l - k)0,,(0) be IBD somewhere, z (for all z), at time n -1 (one lag+
In the past! The value of 0,,._(w, xl is the sum of the
o,__,-Aw, z_ nines the probability that such genes m x

+ _ l(z, x) (1 - k)_,_(w, z). {3_ at time n descended fiom z in the previous generauon.

i.e.. the migration rate. Hence, for b > 1
Development of general equations [br higher tempo-

ral order time lags n/y be illnsu-ated b) first examining • {w, x) = 3" lfz. xlO,,-_ _(w, zL (10)

the second temporal order probabilities of 1BD. In es-
sence, the development follows that _br the mmporal This is also shown bv induction in APPENDIX A. For the

order one case, except that we m us, consider all possible case of equilibrium with k greater than zero. this reduces

rii .........



800 B. K_ Epperson :

to ¢,(y) = (I - k) l(y) + 1 - l(y)¢0(0)
rdw, x) = (1 - k) _l(z, x)¢_-_(w, z). (11} •

Thus all of the space-time probabilities of IBD car, be + _ {(y - z)¢0(z)} (16)
obtained from the spatial probabilities of identity by

using Equation 8 (or 9 in the case of equilibrium) and or

then iterating Equations 10 (or 11). [l(y)
Special ease of a single pop_lation: 117the case of a _I(Y) = (1 - k)l_N (1 t)0(0))

single population we may consider the probability, _,_, )

that a gene, F', selected at random at generation n, is + _ ICy - z);Oo(zSI. (175
IBD (barring mutation for the moment), with another J

gene, F, which is selected at random from the popula- Similarly,
lion at generation n - b. For b = 1 the probability that

F' is directly descended from F (and hence is also IBD5 ¢_(y, = (1 - k) _l(y - z)¢_l(z) (18)

is simply 1/2N. The probability that it is not directly

descended from but is nonetheless IBD is (1 - I/2N) or equivalently
_,,-t.0. Hence _,,a = t/2N + (1 - I/2N)gP,-i.o. Rather

than go throngh the iterative process, we make use of _b(y) = (1 - k) Y..l(z)_b-I(y -- z). (195

the fact that because there is a single population, F nat st
' be descended from either F (with probability I/2N) or Thus,

elsewhere in the population. Hence we have the simple _<.(y) = (1 - k) '_
resuh: ¢,._ = 1/2N + (1 - 1/2N) d_,__0. If mutation is

¢_
inchlded, then

. _l(y- z)t_ z)-,(1-%(0)+ ._l(x)_(z -,)} (20,
tz_v

t2N \ _(w) = (l -- k) 3

At equilibrium.
t: 2N

t;%= (1 - k) _ II - 1 ¢0. (13"J

-_,ltx)(_o(z-y)}}. '21)
For large b and N and small k.

O, = e-"_¢0. (14) It is easy to see that in general O_(y_) =

ease of multiple populations with arbitrary dlmen- _l - k)_ l(y_ - Yb-_) _ l(y,_, - yh-'_'t... _l(y3 - ._)

sionality but with isotroplc migrations and at equUib- )
rium: In tile case of isotropic migration rates (where

• _l(y, - z;ll(z)-(1 - * (0_1 - ._l(x)q%(z - YII" (22)
migration rates are the same tot spatial lags for each of t 2N
two directions within a dimension but may ditf_'r be-

tween dimensions _. it is convement to use spatial lags Thus the space-time probabilities of IBD can be deter-
mined from the spatial probabilities of IBD using Equa-

rather than absolute [ocanons of populations and to lion 22.
assume that the populations either extend nfin tely in

all dimensions or are supported by a muhidimensional Case of multiple populations with one spatial dimen-
torus (MaLf_co'r 19751. In this section, we also assume sion but with isotrople migrations and at equilibrium:

equilibrium with mutation. Let l(y) be the migration The case of populations located along a single dimen-
sion illustrates several aspects of the space-time probabil-

rate from a popnlation at w to a population at w _- y,
and let 0dY) be the probability of IBD between F and ities of IBD. In this case each spatial index is.an integer,.9

• not it vector. Using Four er transforms. MA I.ECO r ( 191 -)
F' at two different populations separated by b genera- showed that in the infinite system case {or effectiveb

tions in time and by spatial lags in the rector y tn space• so for a large torns), the spatial probabilities of IBD are

Translation of Equation 3 and factoring (1 - k) gn'es approximately related bv

o,,,x)I1
ff

+ _ I(z) _,_(y - z) 1 ( 15l where or'-'is the wu'mnce in the distance of migratmn. A
'=_ continuous approxnnation for large distances ofsepara-

or eqtfivalently lion is
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_o(x) = 4_0(0)e-'l'b2_/m. (2,t) Examp es that capture many of the salient features of

]_I±ILECOT(1972) also showed that space-time ln'obabilities of 1BD fi)r isotropic migration
p_:ocesses are shown for strict stepping-stone equilit>

= 1 (25) rium models "Mtb one spatial dimension in Tables I--'L
_0(0) 41\i:r_---k+ 1' "l'ttese were calculated using Equations 3c1, '32, and 33

in conjunction with Equation 11. Calculations were first
Development of the Fourier transforms of the space- done assuming 40,000 populations to avoid any possible
time probabilities of IBD fbr the one-dimerlsion case is edge effects, but the same numbers occurred for calcula-

presented in APPENDIXBand can be used tbr obtaining tions using 400 populations. Computations for 400 pop.
analytic results on the space-time probabilities of IBD. ulations for 10,000 geuerations used '_5 sec of CPU on

For the special case of the strict stepping-stone model,
_-0= 2m, where m is the migration rate between adjacent a Sun Microsystems Sparcslation 20. The key features

are: (l) the degree to which the probabilities do not
populations, so that decrease sntoottdy in time or space; (2) the degree to

¢)0(x) = ¢0(0) (l - _/k_)* (26) which the futlction over space m.'ay become more flat
1 as time lag increases; and (3) the general effects of the

¢0(0) -- _n-4- 1 (27) parameters. Popuhttion size, N, affects all space-time
probabilities of IBD in exactly the same way. Precisely,

• letting d)0(0) = a and as is clear in the Fourier transform in at't'ENDtX _ (Equa-

"... g = (1 - k_) (28) tion B19), the probabibty of IBD within a population,
-.. _0(0), decreases linearly with N, and all of thi_ space-

we have ¢0(y) = ags. For y :¢ -1, 0, or 1, time probabilities decrease by (1 - t)0(0))/2N, so that

el(Y) = (1 - k) {m(@0(y+ 1)+ ¢0(y - 1)) the relative values of the Cb(y) (for b and y not equal to
zero) are unaffected by N. For the models shown in

+ (1 - 2m)#o(y)} (29) Tables 1-4, an arbitrary but small population size (N =

q_l(Y) = (1 - k) {m(ag '*_ + ag_-I) + (1 - 2m)agq 1001 was used to better show the effects of the other
parameters, the rates of migration and mutation. Of

(30) course, for larger migration rates the purely spatial prob-

= (1 - k)a_ Y-_Im_ + m + (1 - 2re)g}. (311 abilities oflBD are smaller for short distances, but they
also decrease more slowly as distance increases (XD.Lg-

Letting c= toga+ m+ (1 - 2re)g, wehave _l(y) = (1 - COT1975).ltisworthpobatil_gouttbathighermigratim_
k)acg _-_. Using this and Eqnation 11, and for -2 > y, rates, m, imply less "inl_brmation" in terms of purely

or y > 2, we have 0_(Y) = (1 - k) '_acz g_-"-. Iterating spatial patterns, because these cause nlore distant popu-
Equation 11, we have tbr - b > y or y > b, the simple lations to be less different relative to nearby populations.
relationship q_e()')= (1 - k) bacbrg'-_, This indicates that Also obvious is that as k (e.g., mutation rate) increases

for populations svhere direct descendence is not possi- the spatial correhttions are generally smaller, but it is
ble among the two populations (separated b,v b in time noteworthy that the decrease with distance becomes
andy in space and - b > y. or y > b) in the strict stepping- sharper. That is, local sbaring of stochastic effects of
stone model, the space-time probabilities of 1BD expo- drift among nearby populations is relatively stronger
nentially decrease wittl spatial distance, when stronger force is acting in the direction of bomog-

For y = -1 or l, enizing the entire system of populations.

{m For short time lags, particularly for time lag 1 the_l ",9= (1 - k) _.(1 - _0(0)) probabilities of IBD [br spatial lags 0 or ± 1 may actually
be greater than q%(0), especially if the mutation rate is

+ m((%(y + 1) not too large. The effect incre_es as the migration rate
into'eases. Similarly, the probabilities of the type Q_(0)

+ O,Ay- 1)) + (1 - 2m)Ou(yjc. tend to decrease rapidly as migration rate increases.

(32) Natnrallv the larger the vahte of k. the faster the de-
creases with time lag, generally. However, tbr some com-

Fory = 0. binations of migration rate and k. small increases in

[1 - 2m 1 probabilities of IBD can occur from b to b + 1 even at
CjIy) = (1 - h) 1-_-._( - o,,(0)/ large spatial and temporal lags.

For long temporal lags. there can be remarkable qlat-

- m(O,dy + 11 tening" of the probabilitiesofIBD fnnction on distance,

- _.ax,- I)) - (1 - 2mlO,(yjl. especially when ntntauon and migration are bothsn-ong. Nonetheless. it is also remarkable that the curves
(33) are re ativel) flat only up to l0 to 100 distance units ill
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TABLE 1

Space-tlme probabilities of identity by descent for the isotropic strict stepping-stone model, with migration rate
m = 0.1 and mutation rate k = 10 -6 and population size arbitrarily set at N = 100

Distance lag y

Time lag b O 1 2 3 4 5 10 40 70 100 1.000 10,000

0 0.7981 0.7956 0.7931 0.7905 0.7880 0.7856 0.7732 0,7031 0.6394 0.5814 0,0336 0.0000
1 0.7984 0.7957 0.793I 0.7905 0.7880 0.7856 0,7732 0.703l 0.6394 0.5814 0.0336 0.0000
2 0.7979 0.7957 0.7931 0.7905 0.7880 0.7856 0,7732 0.7031 0.639,t 0.5814 0.0336 0.0000
3 0.7974 0.7956 0.7931 0.7905 0.7880 0.7856 0.7732 0,7031 0.6394 0,5814 0.0336 0.0000
4 0.7971 0.7956 0.7931 0.7906 0.7880 0.7856 0.7732 0.7031 0.639,t 0.581,t 0.0336 0.0000
5 0.7968 0.7955 0.7931 0,7906 0.7880 0.7856 0,7732 0.7031 0.6394 0.5814 0.0336 0.0000

10 0.7957 0.7949 0.7929 0.7905 0.7880 0,7856 0.7732 0.7031 0.6394 0.5814 0.0336 0.0000
100 0.7892 0.7890 0,7883 0,7873 0.7858 0.7841 0.7731 0.7031 0.639,t 0.581,1 0.0336 0.0000

1,000 0.7696 0.7696 0.7694 0.7690 0.7686 0.7680 0.7632 0.7031 0.6394 0.5814 0.0336 0.0000
10,000 0,7082 0.7082 0.7082 0.7081 0.7079 0,7078 0.706-t 0,6804 0.6338 0.5805 0.0336 0.0000

most realistic scenarios. Still this may be a substantial value is not 0 as it is by definition in the purely spatial
distance, case. Because we can choose any b, we can iterate these

For the space-time coalescence probabilities, the n is equations from the initial time lag of 0. Thus it is possi-
not necessa*y so long as we are careflti not to exceed n hie to determine the theoretical spatial and space-time
generations going backward in time and equilibrium is coalescence times for general systems and to conduct

sufficient but not necessaQ" in this regard. We derived coalescence analysis of data collected from different

equations analogous to Equations 3, 9, and 11 for _, for time pel_iods. It can also be shown that
example, the following (for s > 1) ,-b

_(n, y) = _(1 - k)'-"rrb.,(y). (36)
v_._(y) = _,_l(z) l(x)_b._-i(y + z - x) ,=0

.: x

Note the summation includes s = 0 (probability that F'
- _l(r.)l(y + z)_r_,__t(O)/2N (34) is a direct descendent of F).

and (for s = II

DISCUSSION
"rr_,_(y) = _l(z)l(y + z)/2N. 135)

The rnathematical relationships developed in this art[-
The exact same equations are found for the coalescence cle demonstrate that the probabilities (q)_(y)) of IBD

probabilities for two sam pled genes separated in space between genes separated bv time lags (b) as well as

but not time /MALI;2COI 1975/. so that the equarion distance lags /y) in space are _usuallv complex) linear

holds for all b > O. Ho_'ever, we note that for s = 0 the functions of the spatial probabilities of IBD fbr general

TABLE 2

Space-time probabilities of identity by descent for the isotropic strict stepping-stone model, with migration rate
m = 0.01 and mutation rate k = l0 -6 and population size arbitrarily set at N = 100

Distance lag y

Time lag b o 1 2 3 4 5 10 40 70 100 1.000 10.000

o 0.9259 0.9t67 0.9075 0,8984 0.8894 0,8805 0.837"1 0.6194 0.4582 0.3389 0.0000 0.0000
1 0.9261 0.9167 0.9075 0.8984 0.8894 0.8805 0.8374 0,6194 0.4582 0.3389 0.0000 0.0000
2 0.9259 0.9167 0.9075 0.8984 0.8894 0.8805 0.837,t 0.6194 0.4582 0.3389 O.00O0 0.0000
3 0.92,57 0.91 fi7 0.9075 0.8984 0,8894 0.8805 0.8374 0.6194 0.4582 0.3389 0.0000 0.0000
4 0.9255 0.9167 0.9075 0.8984 0.8894 0.8805 0.837q 0.6194 0.4582 0.3389 0.0000 0.0000
5 0.9254 0.9167 0.9075 0.8984 0.8894 0.8805 0.8374 0.6194 0.4582 0.3389 0.0000 0.0000

10 0.9245 0.9166 0.9075 0.8984 [).8894 0.8805 0.8374 0.0194 0.4582 0.3389 l).0000 0.0000
100 031t63 0.913-I 0.9067 0.8982 0.8894 0.8805 0.8374 0.[;194 0.4582 0.3389 0.0000 0.0000

t.000 0.8930 0.8922 (1.8899 0.8861 0.8811 0.8751 0.8370 0.6194 0.4582 0.3389 0.0000 0.0O00
10.000 0.8214 0.8212 0.8206 0.8195 0.8180 0.8160 0.8006 0,0193 0.4582 0.3390 0.0000 0.000O
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'FABLE 3

Space-tlme probabilities of identity by descent for the isotroplc strict stepping-stone model, with mlgradon rate
m = 0.1 and mtttation rate k = 10 _and population size arbita-ari_ set at N = 100

Distatlce lag y

Time lag b 0 1 2 3 4 5 l0 40 70 100 1,000 10,000

0 0.2833 0.27,t3 0,2657 0.2573 0.2491 0.2413 0.2054 0.0783 0.0299 0,0114 0.0000 0.0000
1 0.2843 0.2747 0.2657 0.2573 0.2491 0.2,t13 0.2054 0.0783 0.0299 0.011,t 0.0000 0.0000
2 0.2824 ,0.2747 0.2657 0.2573 0,2,i91 0.2413 0.205,t 0.0783 0.0299 0.0114 0.0000 0.0000
3 0.2808 ,0.2746 0.2657 0.2573 0.2,t91 0.2,t13 0.2054 0.0783 0.0299 0.0l 14 0.0000 0.0000
,t 0.2790 0.27,13 0.2657 0.2573 0.2491 0.2413 0,2054 0.0783 0.0299 0.011't 0.0000 0.0000
5 0.2785 0.2739 0.2657 0.2573 0.2491 0.2,t13 0.2054 0.0783 0.0299 0.0114 0.0000 0.0000

I0 0.27,17 0.2719 0.2652 0,2572 0.2491 0.2413 0.2055 0.07&t 0.0299 0.0114 0.0000 0.0000
100 0.2515 0.2508 0.2488 0.2456 0.2413 0.2362 0.2052 0.0784 0.0299 0,0114 0.0000 0.0000

1,000 0.1847 0.1846 0.1842 0.1835 0.1826 0.1814 0.1718 0.0784 0.0300 0.011,t 0.0000 0.0000
10,000 0.044! 0.0441 0.0,#tl O.04,ti 0.0440 0,0,t39 0.(I,t34 0.0342 0.0207 0,0101 0.0000 0.0000

migration models with arbitrar T numbers of spatial di- (MAL_;COr 197o). MaMcot developed analytical expres-
mensions, with isotropic or anisotropic migration, at sions R)r spatial probabilities oflBD for isotropic miglzt-

equilibrium or not. Equations were generated that can tion models but not for anisotropic models, which corn-
be iterated so that the space-lime probabili0es of IBD plicates the Fourier transform, bill in principle this

can be calculated fi'om the spatial probabilities of IBD, should be possible. We focused on using isotropic equi-

again for the same range of general models. In all of librium models as examples to illustrate some key lea-
these systems the eflkcts of number of individuals within tures of the space-time probabilities of IBD and as an

populations, N, are simple. The probabilities of IBD exainple of their Fourier transfbrms (which carl also be
withiu the same population at the same tinte and the fotmd for isotropic nonequilibriuin systems tbr space-

purely spatial probabilities oflBD decrease linearly with time as well as spatial probabilities of IBD).

N (e.g., M,_t._:COT 1975), and APPENI)IX Equation BI9 Several fundamental features of space-time probabili-
shows that the space-time probabilities also decrease ties of IBD were illustrated using the equilibrium one-
with N. Moreover, we woulrl expect, although did not dimensional strict stepping-stone migration process, for

show, thatvariation of Namong populations would have which the purely spatial probabilities have the simple

little eft_:ct, as is the case tbr spatial correlations of allele form of an exponential decrease with distance of spatial
fi'equencies (BODM_:R and CAVAt.LI-SFORZA 1968). Tile- separation. First, for relatively short time lags, the proba-

o_y' fbr purely spatia_ probabilities of IBD has already bilities of IBD for relatively small distances can exhibit

been developed tkn- equilibriun_ and nonequilibrium complex behavior, which would not necessarily be ex-

general models by MAI.{:COT (19-t8, 1972, 1973, 19751 petted from consideration of purely spatial patterns
a*_d o hers, _ r d these can also be rela ec to co_ esce_ce Probabilities of IBD for two germs exisnng at difl;erent

evems between pairs of genes or gametic kinship chains generations but within the same population or between

TABLE 4

Space-time probabilities of identity by descent for the isotrople strict stepping-stone model, with migration rate
nt = 0,01 and mutation rate k = 10-_ and population size arbitrarily set at N = 100

Distance lag y

Time lag b 0 1 2 3 4 5 10 40 70 100 1.000 10.000

0 0.5556 0.5000 0.4500 0.-t050 0.3645 0,3281 0.1937 0.0082 0,0003 0.0000 0.0000 0.0000
1 0.5566 0.5000 0A500 0.4050 0.36-t5 0.3281 0.1937 0.0082 0.0003 0.0000 u.0000 0.0000

'2 0.5554 0.50(/0 0.4500 0.,t050 0.3645 0.3281 0.1937 0.0082 0.0003 0.0000 0.0000 0.0000
3 0.55,t2 0.5000 0ASO0 0A050 0.3645 0.3281 0.1937 0.0082 0.0003 0.0000 0.0000 0.0000
4 0.5531 0.5000 0.-1500 0.,I050 0.3645 0.3281 0.1937 0.0082 0.0003 0.0000 0.0000 0.0000
5 0.5520 0.5000 0.,t500 0.4050 0.3114a 0.3-81 0.1937 0.0082 0.0003 0.0000 0.0000 0.0000

l0 0.5467 0.4998 0.4500 0.,i050 0.3645 0.3281 0A937 0.0082 0.0003 0.0000 0.0t)o0 0.0000
100 0.,t955 0A802 0.4-152 0.4043 0,3647 0.3284 0,193,9 0.0082 0.0(103 0.0000 _L0000 0.0000

1,000 0.3594 0.3566 (;.3485 0.3357 0.3190 0.2995 0.1937 0.0083 0.0004 0.0000 0,0000 0.0000
10,000 0.08.16 0.0845 0.0841 0,0834 0.0824 0.0812 0.0719 0.0087 0.0004 0.0000 0.0000 0.0000
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space-time correlations in allele frequencies (EPPERSON Matkcor, G., 1948 LesMathdmatiquesde I'tliridit_. Masson, Pads.
1993b). This means that if we consider a gene at the MAL_:CoT,G., 1950 Quelquessch_-masprobabilistessurlavadabilit¢_

present gene ration at a particular geographic location, des populations naturelles. Ann. Univ. Lyon Sci..Sect.A 13:37-60.
MAL_CO'r,G., 1972 Gdn_tique des populations naturelles darts le

its ancestors are essentiallyjust as likely to have been cas d'un seul locus. I1. Etude du coefficient de parentd. Ann.
from populations within such a range of distances as Gdn_t. S,H.Anita. 4: 385409.
from that location itself. For example, with a migration Mar_;:cov, G., 1973 Gdnfitique des populations diploides naturellesdans lecas d'un seul locus. IlL Parent_, mutations et migration.
rate, m, of 10% and a per sequence mutation rate, k, of Ann. GO.n_?t.S61.,_lim. 5: 333-361.

10 -a (Table 1) a population located 100 times more MAt.¢co'r,G,,1975 Heterozygosltyandrelationshipinregutarlysub-
distant than the average distance between adjacent pop- difided populations. Theor. Popul. Biol. 8: 212-241.MORTON,N. E., 1969 Human population structure. Annu. Rev.
ulations is still "_82% as likely to share identity as is an Genet. 3: 5g-74.

ancient genem the same population {location) itself. Rasx.ua. B., 1996 The sampling theory of neutral alleles in an

for genes from 10.000 generanons ago. For another island population of fluctuating size. Theor. PopuL Biol 50:91-104.
example, with m = 0A0 and k = 10 -_ [Table 3), al the S'ram._:v. S. E.. 1997 Alu repeats and human-evolution.J. MoL Evol
same generation tile value at spatial lag 100, ¢0(100) 4S: 6-7.

(0.0114) is only 4% as large as at the origin, 00(0) WRmwr, S., 1943 Isolation b! distance. Genetics 28: 114-138.x.VRIdHT_S.. [965 The interpretation of population structure b_
19.2833), whereas for 10.000 generations ago, F-statisticsMth _peclalregardlosystemsofmating. Evohnion 19:
• _(100) 0.0101 is 23% aslarge asot0._(0) (0.0441). 395--420.

It may he expected that a system of populations existing Communicating editor: M. W. FELOMAX
in two dimensions would show even greater flatness, as is

the case for space-time correlations of gene frequencies

,EPPERSON 1993b). Moreover. anisotropic m_gration

could cause distant populations to be more likely than

the same Ior ve_, nearby) populations to be the ances-

tral source of present variants (EPPERSON 19931_ _.Theo- APPENDIX A
retical analvses of space-time probabilities of IBD thus

can also provide a means for determining the degree of To demonstrate the validity of Equation 10 in the
certainty that ntav be placed on the historic geographic text consider the equation for _,,,_,(w, x_.

origins of molecular genetic polymorphisms 0,.,_,(w, x) = Y.l(k, x)_,,_._tw k). /AI?
Finalh,, this article developed coalescence probabili-

ties for nvo genes in sam pies separated in nme as well and text Equation 2.
space. Thus tile coalescent can be extended to ancient

DNA. and. for example, an ancient DNA sample could _l]
be placed in a gene genealo D reconstruction nsing the 0,,-H(w, k) = _2N l¢w. k) + [1 - 2N]l(w' k)0,-,.,.0(0)

coalescent. - "_ llz, k)O,-._,.o( w, zL (A2)
I [hallk l_'O aIIOII'¢IIIOUS leviewel'S for helpful Col_nlellIS Oil _r :'ato

earlier xx'rsion of the manuscript, This research was supported in
pan by grants from *lclntire-Stennis and the Michigan Agdcuhural Snbstituting the right-hand side of Equation A2 for
Experiment Station. O,-i.l(tv, k) in Equation AI produces
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: x)_- k,+(,_ k) _-(1- +
• t_.._..o(O) + ,,'_,_l(*'k)_,,-_.dw, z)}. (B3)

MALf-:cor" (1972) showed that
(A3)

K_(c0 - (l - %(0)) (1 - k)"-L(cOL(1/a)
The simplest way' to show the correspondence of tiffs 2N ! - (1 - k)_'L(ct)L(t/cO
equation to text Equations 7 or' 8 is to multiply through
the brackets and compare term by term. The first term (B4)

in Equation A3 is, substituting the dtunmy variable ._ To simplify tbe exposition, let a = (1 - 4)o(0))/2N, and
for k, thus

21(z, x) -1 l(w, z), (a4) Kda) = (l - k)l.(a){a -, a(!.- ..k)(",LJ_)Z_!I/_) _} (B5): 2N 1 -- (1 -- k)'L(oOL(1/cOI

which is a rearrangement ot'the first term in text Equa- = (1 - k)L(cQrll + _1 - k)O'L(a)L(I/a) ]tion 7. The same rearrangement of the second term in 1 (]- 7 _°)TL_3-_;_(_.&__/ (B6)

i (A3) is = (1 - klL(cQa

-f- i-i --_7<)-i{77_7 J
and this clearly equals the second term rlf Equation 7. (B7)

For the third term ,,,defirst interchange the sulrlmation Thus,
signs, gMng

(l - k)L(a)a
_.dO,,-,,.o(w, z)_l(z, k) l(k, x), (A6) Kl(a) = . (B8)
_,_, I 1 - (1 - k)eL(a)L(1/a)

Substituting y for k yields the third term of Equation 7. Similarly, tnmsforming text Equation 18 for b > 1 gives
Thus Equations A3 and 7 are eqtfivalent. Because the

higher-order lags (>2) involve the same types of terms, K,(e0 = (1 - k)L(oOKs_l(a ). (BP)
it follows that Equation t0 is true by induction. Of

course, the analog of Equation 11 is true also when Thus, for b = 2,

there is mutation and the equilibrium is obtairled. (1 - k) L(a) a

K,,(cl) = (1 - k)L(cQ 1 - (1 - k)_L(eOL(1/cO

(B10)
or

APPENDIX B
(1 - k)_-L_-(n)a

As an exantple, we develop the Fourier transform fbr _(cO = 1 - (1 - k)_L(c_)L(1/cO" (B11)
the case of isotropic migration, equilibrium, and one

spatial dimension. The Fourier transform is F = Ey_fly), Repeating this process, we see that for b _ 1,

where a = e-_, and let us define K(c0 as (1 - k)_D(cOa

K_(c_) = F(_(y)) = _c_)_(y). (BI) Kdc0 = I - (1 - k)"-L(n)L(1/cO" (Bl2)

Applying the transfonn to both sides of text Eqnation It is possible to obtain some attalvtical solutions for
17. we have the value of 0b(y) as a fnnction of y and b by taking the

inverse of the Fourier transform• Indeed. the inversion

[._ ,/(_I').. involves the same roots as in the pnrel) spatial caseKt(a) =(l-k) 2.a li- od0))
/_ 2N because the denominator is the same. Tltat is. we need

only consider the singularities as the denominator goes+ _a'-:_x:l(_v - z)_o(z) . (B2) to zero. We use an approach similar to the residue
theorem. We let H(a) = L(a)L(lfa) and recognize

Defining L(a) = Z e_.'l(y) and recognizing the relation- that we need only consider the singularity where
ship of'the prodttets of fourier transforms of two fHnc- Hfc_ p = 1/(1 - k) z tbecause we have assumed that k >

tions to the convohltion of two functions and that we 0), which we set equal to 1 - kt. D,re need consider only

can interchange the order of the summanons m the the poles a_ and a,_,= 1/c_, which are very close to 1.0.

second term lead to Using the inversion formula of MaLI::COT (1972),



806 13,ICEppecso_l

( ?)KdoO = _ Ai - (BI3) 0dy) = (1 - k)b(1 - _0(0))U(cq) 1 "- -- . (B19) '
i=,.2 c_ - % 4N¢__,4

and 1t is of in terest to take the Taylor series expansion of l)(cq )
about 1.0:

2wiT:<c_ -% L?(oq) = L_(I) + - 1)

where + d"L*(l) (_1 -- 1) _ + O(Cq -- 1) 3. (B20)
Aj = lim(a _ _)K_(c_) (B15) d'-'at 21

a_,ct I

It is easT to show that/:(1) = 1.0, and that dL_(l)/dal =

At = a(l - k) _lim (co - cq)Lb(cQ bl (for b > 1), where l is the average movement of gene
- migration. In tile isotropic case, l is zero. Also in the

isotropic case the value of d_L_(1)/d"-oq = &re, Thus,
Because both the numerator and the denominator go

to zero in the limit, we can use l'Hopit_d's rtde, L_(cq) = 1 + &r"(cq - 1) e + o(cq - 1) _
2_

Al=a(l_kplim - (d/d_) (qt -- ,,)U(c_) [_,_2_13"'_-=_(d/da){1 - (1 - k)_'L(a)L(1/a)} = 1 + her'S(2k_)e _- o--- . (B21)
2

(BI7) Tile first two terms of Equation B2! provide a good

or approximation if k is ve W small compared to (r and
l/b (the latter is required because higher terms of the

_limL_(ot) + (a - aj)bL'(a)Lb-I(a) Taylor series may involve higher powers of b), Under
A, = a(1 - k) ..... (1 - k)'-'H'(o) these conditions the following approximation is good:

L_(cq) = 1 - &r'-'(('42-/0/2tr) "°= 1 + bk. Note also that

(B18) when b is large the probability of IBD decreases essen-

tially exponentially with the time lag as well as with
MALi:COT (1972} showed that H'_a_/ = 2&(a_ - 1) T distance of separatiom
o(oq- 1) '2=-2cy_f_ + o(4k/cd'),where(r_isthevariance Fourier transform methods can be developed for

in the distance of migration. "0,qaen k is small. H' (e_) = space-ume probabilities of IBD for systems with two or

-2(r_/2k. Taking the limit, and substituting back for a more spatial dimensions, although the notation be-

and putting this altogether, we have comes more complicated.


