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5. Interacting Effects of Multiple Stresses on
Growth and Physiological Processes

in Northern Forest Trees

Judson G. Isebrands, Richard E. Dickson, Joanne Rebbeck,
and David F. Karnosky

Global climate chagnge is a complex and controversial subject, both
technically and politically. Recently, the Intergovernmental Panel on
Climate Change (IPCC) of the United Nations concluded that "'the
balance of evidence suggests a discernible human influence on global
climate," and that "'further accumulation of greenhouse gases will commit

the earth irreversibly to global climate change with its consequent

ecological, economic, and social disruption" (Houghton et al., 1996:
Brown et al., 1997; Kerr, 1997). One of the concerns is that changing
climate will have major effects on future forest composition, productivity,

sustainability, and biological as well as genetic diversity (Houghton et al.,
1996).

Two pollutants that are generally considered to have the greatest
impacts on plant growth and are indisputably increasing concomitantly in
the atmosphere as a consequence of human activity are carbon dioxide
(CO_,) (Keeling et al.. 1995) and tropospheric ozone (03) (Taylor et at..
1994: Chameides et al., 1997). Both pollutants are increasing concurrently.

and are expected in rural agricultural and forested areas to have the
greatest impacts on plant growth. Increasing CO_, typically enhances plant
growth (Kimball et al., 1990: Koch and Mooney, 1996), while O3 has
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a deleterious affect on plant growth (Adams et al.. 1989: Yunus and Iqbal,
1996). Less is known about the responses of plant growth to the
interaction of concomitant increasing CO2 and 03 (Allen. 1990; Krupa
and Kickert, 1993). Similarly, little is known about the interacting effects
of elevated CO, and O3 on forest trees and forest ecosystems, but overall
responses in trees to elevated CO,. (Ceulemans and Mousseau, 1994) and
03 (Raineer et al.. 1993; Taylor et al., 1994) are similar to that of other
plants. As with crop plants, it is known that inherent differences exist
among and within forest tree species in their response to certain
atmospheric stressors (Kozlowski and Constantinidou, 1986a.b; Taylor,
1994; Karnosky et al., 1996; Hogsett et al., 1997).

The literature is exhaustive on the subject of single factor effects of CO_,,
O3, and other stressors on plants. Thus, it is beyond the scope of this
chapter to review all these contributions. Anyone seeking more informa-
tion on CO, effects on plants should consult references by Strain (1987),
Kimball et al. (1990), Koch and Mooney (1996). and Yunus and Iqbal
(1996): and for effects on woody plants, Ceulemans and Mosseau (1994),
Curtis (1996), Wullschleger et al. (1997) and Mickler and Fox (1998). For
information on 03 effects on plants, the reader should refer to Adams
et al. (1989). Mooney et al. (1991), Krupa and Kickert (1993). and Yunus
and Iqbal (1996): and for effects on woody plants and forest ecosystems,
Taylor et al. (1994), Taylor (1994), Fox and Mickler (1996), and Hogsett
et al. {1997).

Multiple Stress Effects

Plant responses to CO2 and 03 become even more complex when other
known stressors such as nitrogen availability, temperature and water
extremes, and pests, are combined with the effects of CO_, and 03 (Allen,
1990). Traditionally, research on the effects of air pollutant stresses on
agricultural crops and forest trees examined one or at most two stresses at
the same time with a single plant species. This approach is not surprising
given the logistic problems and expense of multiple-factor experiments.

However. these single and occasionally multiple-factor experiments have
not been very helpful for understanding the long-term response of a single
species under natural conditions, much less long-term community or
ecosystem responses. Given the strong genetic component of response
(Taylor, 1994: Karnosky et al.. 1997). and that essentially every biotic and
abiotic factor measurable in the environment modifies the responses to air
pollutants, and that these responses change with time as trees acclimate to

these variable stresses, it is impossible to experimentally determine futt, re
stands or community dynamics. However. single- or multiple-factor
experiments with as many other environmental factors as possible held
constant or increased in response to plant demand, are still necessary to
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provide biological and mechanistic input into process-based models
(Taylor et al., 1994; Lee and Jarvis, 1995; Lloyd and Farquhar, 1996;
Thornley and Cannell, 1996). In this chapter we focus our discussion on the
responses of aspen (Populus tremuloides Michx.), yellow poplar (Lirioden,
dron tulipifera L.), and white pine (Pinus strobus L.) to ozone (03), carbon
dioxide (CO2), their interactions (03 x CO_,), and the interactions with
water and nitrogen (N) availability, and with pests. Responses of other tree
species may also be included when information is limited.

In general, increasing atmospheric CO, concentrations will increase
photosynthetic rates, leaf production, height growth, and dry weight
production. In contrast, increasing atmospheric concentrations of 03 will
decrease photosynthetic rates, increase leaf senescence, and decrease dry
weight production. The amount of change, however, depends on many
internal plant factors (e.g., plant and tissue age, plant growth strategy,
genotypic response, ability to adapt to changing environmental condi-
tions, etc.) and external environmental factors (e.g., light, nutrients, water,
temperature, magnitude and duration of exposure, etc.) (Miller et al.,
1997). Because elevated CO_, concentrations impact many metabolic
processes and usually increase growth, higher CO2 concentrations may
also compensate for other environmental stresses (Allen, 1990; Ceulemans
and Mousseau, 1994). Compensation may work primarily through an
increase in the efficient use of other limiting resources. Such increased
efficiency is commonly found in CO,_-water use interactions (Eamus and
Jarvis, 1989; Eamus, 1991; Bowes, 1993; Lee and Jarvis, 1995; Anderson
and Tomlinson, 1998; Tomlinson and Anderson, 1998). An increase in
CO2 concentration commonly increases photosynthetic rate and decreases
stomatal conductance and transpiration rates. Increased carbon fixation
and decreased water use leads to an increase in water use efficiency. This
decrease in water use may be beneficial during short periods of water
stress. However, high CO_, concentrations also often increase total
leaf area such that improved water use per unit area is offset by
increased leaf area. Thus. total water use during drought may be greater,
increasing total water stress (Kerstiens et al., 1995: Beetling et al., 1996).

The interactions of CO,_ and nutrients have important implications for
plant growth. The lack of consideration or lack of adequate control of
nutrient supply is probably a major factor in much of the conflicting
experimental results of growth responses to increased CO, (Curtis. 1996:
Pettersson et al., 1993: Wullschleger et al., 1997). Even when several levels
of nutrients are supplied initially, plant growth constantly changes the
ratio of supply to internal demand. Ideally, nutrients should increase

exponentially to maintain a constant relative growth rate (Ingestad and
Agren, 1995: Coleman et al., 1998). Most studies show that CO_-
enrichment increases growth even though light and or nutrients are
limiting growth (Conroy and Hocking, 1993). A common assumption is
that response to CO_, will be less if light or nutrients are limiting (law of
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the minimum). This response is often true if absolute growth increases are
considered (low N plants plus CO2--1ow N plants). However, the
proportional or percent growth increase in response to CO2 in N-limited
plants is often equal to or greater than that found in nonlimited plants
(Bowes, 1993: Lloyd and Farquhar, 1996). However, the opposite
response is also frequently found (Curtis et al., 1995: Gebauer et al.,
1996). Response seems to be strongly controlled by plant life history and
the relative allocation of carbon (C) and N to leaf and root growth
(Bazzaz and Miao, 1993: Laurence et al., 1994: Lloyd and Farquhar,
1996). A common response to CO2 enrichment is a greater increase in C
fixation rate than N uptake rate. If much of this C is used in leaf growth
rather than root growth and N uptake, leaf N concentration will decrease
(based on area or dry weight). The increase in total leaf area, however,
even if N uptake rate decreases, results in greater total plant N content
(Idso et al., 1996; Tissue et al., 1997).

Trees growing in the field are seldom exposed to a single environmental
stress. With increasing atmospheric pollutants (e.g., CO2, 03, N deposi-
tion), trees must respond to these new stresses in addition to more
common stresses, such as drought, low light, and nutrient deficiencies.
Carbon dioxide enrichment may partially or totally ameliorate growth
decreases in response to these common stresses. However. the addition of
03 stress is often additive to growth impacts of these other common
stresses (Greitner et al., 1994), and CO2 may or may not compensate
(Volin et al., 1998). Ozone damage is often greater in fast-growing plants
that are watered and fertilized (Winner, 1994: Dickson et al., 1998), or the
converse, slow-growing, stressed plants are less sensitive to 03 damage,
particularly if water*stressed (Tingey and Hogsett. 1985). Published results
are contradictory. For example. N fertilization had no effect on 03-
induced decreases in growth and leaf senescence of hybrid poplar
(Gunthardt-Goerg et al.. 1996): however. N fertilization increased 03
impact on growth of Norway spruce (Picea abies [L.] Karsten) (Lippert
et al., 1996) and radish (RaphamLs sativus L.) (Pell et al., 1990): but
decreased growth in aspen (Karnosky et al.. 1992a.b) and birch (Bet,da
spp.) (Pii_kkonen and Holopainen, 1995). These differences in response
reflect differences in experimental protocols, plant growth strategy, and C
allocation patterns. Large differences in response are also found between
species (Tjoelker et al.. 1993) and among clones or genotypes within
species (Taylor, 1994: Karnosky et al., 1996: Dickson et al., 1998).

Knowledge about the combined impacts of chroniclv elevated CO2 and
03 on ecosystems remains limited and largely speculative. It has been
shown that litter decomposition exposed to elevated CO: andor 03 is
significantly decreased, suggesting nutrient cycling whhin ecosystems may
be impacted (Boerner and Rebbeck. 1995: Scherzer et al.. 1998). Insect
herbivory and other impacts on plants are also significant factors in
ecosystem responses to environmental stresses. There is sufficient prelim-
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inary data to predict with confidence that both CO: and 03 will

significantly affect fundamental plant processes, which will translate into
altered tree susceptibility to all major guilds of plant-feeding inseCts (i.e.,

folivores, phloem and xylem sappers, phloeo- and xylophages, and
rhizophages). Under some circumstances, this may precipitate rapid,
substantive changes in plant competitive abilities and thereby drastically
alter the normal compositional and successional trajectories of plant
communities (Maron, 1998). Elevated CO2 decreases leaf N levels and

increases starch content, fiber, leaf temperatures, and concentrations of
phenolics and tannins (Mooney et al., 1991: Bazzaz and Fajer, 1992:
Lincoln et al., 1993; Trier et al., 1996). Responses for most insect folivores
are typically increased leaf consumption, coupled with decreased growth,
survival, and fecundity (Lincoln et al., 1993). However, this research
applies primarily to external folivores. No one has yet investigated the
responses of leaf miners or those of stem and root borers. Miners typically
selectively feed on mesophyll and parenchyma tissues and may be able
to avoid serious CO2-induced nutrient dilutions and increases in raw
fiber (Trier and Mattson, 1997). No one knows how the biochemical
micro-environment of stem borers is likely to change, and how borers

may respond. Carbon dioxide-induced increases in cambial growth may
enhance rapid callus formation and thus more certain containment and
death of stem-invading larvae. Theory also predicts that the standard
hypersensitive or rapid induced (secondary chemical based) resistance
(RIR) in stem tissues to foreign invasions may be enhanced given the fact
that RIR and plant growth are usually positively linked (Herms and
Mattson, 1992).

Under elevated ozone, decreasing whole plant growth and module
longevity are typical responses (Pye. 1988). This decrease is due to the
phytotoxic effects of elevated O> which typicalIy decreases Rubisco
(Brendle,v and Pell, 1998). lowers rates of photosynthesis and decreases
leaf surface area due to premature leaf abscission lespecially in sensitive
species). Ozone enrichment also generally' diminishes branch growth and
longevity of short shoots (Matyssek et al.. 1993). leading to weakened
radial growth and diminished growth and maintenance of fine roots
(Coleman et al., 1996). In their seedling and sapling stages, many

indeterminately growing tree species produce large populations of leaves.
which are strong sinks throughout the growing season. As older source
leaves continually abscise with O._ stress, total C fixation decreases.

resulting in new leaf growth at the expense of allocation to fine roots and
storage. Shoot growth in the next season may subsequently be affected
IAndersen and R,vgiewicz. 199 l). Ozone fumigation of plants has resulted
in increased plant susceptibilit.v to many species of herbivores IHerms

et al.. 1996). However, there have been no long-term investigations
comparing many different guilds of insects. Herms et al. (1996) found
that growth of four species of leaf feeders was enhanced by O_ treatment
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of trembling aspen plants. It is likely that other guilds, st, ch as leaf miners
and stem borers, will also be enhanced. This enhancement is likely because

high levels of 03 may interfere .with the various local and system signal
transduction pathways that plants have evolved to produce both gener-
alized and specific defenses against pathogens and insects (e.g., widespread
cell membrane damage, stressed C budgets, etc.).

This chapter focuses on the effects of interacting multiple stresses on
growth and physiological processes of northern forest trees with emphasis
on the investigations conducted as part of the United States Department
of Agriculture (USDA) Forest Service's Northern Global Change
Research Program. In our portion of that program, parallel studies of
the effects of interacting CO2 and 03 on forest trees were conducted

on plants in pots in controlled environments and in open top chambers,
and in the ground in open top chambers, in a cooperative study
at Delaware, OH (USDA Forest Service, Northeastern Research Station),
Rhinelander, WI (USDA Forest Service, North Central Research
Station), and Alberta, Michigan (Nlichigan Technological University).
Emphasis was on trembling aspen at Rhinelander and Alberta, yellow
poplar at Delaware, and on common seed sources of white pine at
Delaware and Alberta. Because different responses were observed among
species and locations, results are presented here on a species basis.

Trembling Aspen

Trembling aspen is the most widely distributed tree species in North
America and is a significant ecological and commercial species for the
eastern deciduous, boreal, and Rocky Mountain forest biomes (Barrett,
1980: Powell et al., 1992: Hackett and Piva, 1994). It is highly responsive
to most stresses and has a high degree of natural genetic variability. Aspen
is highly responsive to CO2 (Brown. 1991: Sharkey et al.. 1991), 03
(Karnosky. 1976: Karnosky et al., 1996: Wang et al., 1986: Berrang et al.,
1986, 1989, 1991: Karnosky et al., 1992a.b, 1996). nitrogen (Coleman
et al.. 1998). water stress (Griffin et al., 1991), and herbivores (Lindroth
et al.. 1993). The ease of cloning aspen is also an important aspect of this

species because various clones can be propagated for use in physiological
and molecular studies in which replication is often limited and natural

genetic variability of seedling experimental material may mask responses.
Karnoskv et al. (1996) showed a decrease of 30 to 40°0 in coefficients of

variation for 03 responses of clones vs. seedlings. This finding was
especially striking as the clonal comparisons had only about halt" as many

plants as the seedling studies. B; selecting clones with a range of stress
tolerances ITable 5.1), the range of natural variability found in seedlings
can be mimicked (Karnosky et al., 1996) and the ease of detecting

treatment effects is greatly enhanced.
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Table 5.1, Origin and Background Ozone-Sensitivity Information of the Populus
Tremuloides Plants in This Chapter (Karn0sky et al., 1996)

Plants Orgin (County) Foliar Ozone Growth Ozone
Sensitivity Sensitivity

Clone 216 Wisconsin (Bayfield) Tolerant Tolerant
Clone 253 Michigan (Leelanau) Sensitive Sensitive
Clone 259 Indiana (Porter) Sensitive Sensitive
Clone 271 Indiana (Porter) Intermediate Intermediate
Seedlings Michigan (Houghton) Untested Untested

Tropospheric Ozone

It is well known that 03 can affect aspen growth and that this impact
varies considerably with genotype (see Fig. 5.1 color insert). Wang et al.
(1986) showed an 18 to 20% decrease in aspen growth in nonfiltered vs.
filtered air in Dutchess County, New York. In contrast. Karnosky et al.
(1992a) found decreases of stem biomass following single season
exposures of 80 ppb 03 varying from 0 to 74%, depending on clone.
For the highest seasonal doses (similar to those in the lower Great Lakes
region), decreases of 43, 21. and 33%, respectively, were found in leaf.
stem. and root biomass across all clones tested. Single season responses
may compound with further exposures, particularly in the more sensitive
clones such as 259 (Fig. 5.2). Ozone also affected crown architecture by
influencing the ratio of long and short shoots retained and by affecting

2500

ICF

2000

T i-11 XO 3m
,$

1500 l-'i2X 03

,", i 2 X 03+ 150
1000 CO2

o

1992 1993 1994 1992 1993 1994

Clone 216 Clone 259

Figure 5.2. Changes in total stem dr.,, weight of aspen clones exposed to ele,,ated
0._ and 0- - C02 for 3 years in open-top chambers.
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stem and branch diameter and length weight ratios. Carbon allocation
was also impacted (Coleman et al.. 1995b). Because the lower leaves of
aspen that supply photosynthates to roots senesce prematurely with
exposure to O> root growth appears to be particularly sensitive to 03
(Coleman et al., 1996).

Much of the 03 response in aspen appears to be controlled by the
photosynthetic apparatus. Clonal tolerances to 03 as determined by
previous studies were highly correlated to photosynthetic responses
(Coleman et al., 1995a). The seasonal decrease in biomass attributable
to 03 in aspen can be largely explained by decreases in whole-tree
photosynthesis estimated for different leaf categories in combination with
total leaf area per each category (Coleman et al., 1995a). Premature leaf
senescence (Fig. 5.3) plays an important part in the decrease in whole-tree
photosynthesis by eliminating photosynthesizing lower leaves (Coleman
et al., 1996). Although some photosynthetic compensation occurs in the
upper leaves under 03 exposure, it is not enough to make up for the lost
leaf surface area.

The differences in the tolerance of the clones examined in our studies

(Karnosky et al., 1992a,b, 1996, 1997) cannot simply be explained by
differences in photosynthesis (Ps) rates or stomatal conductance (Coleman
et al., 1995a) that would lead to differing internal 03 doses as predicted by
Reich (1987). Sheng et al. (1997) found increased superoxide dismutase
(SOD) activity in our O3-tolerant aspen clones as compared with 03-
sensitive clones during long-term 03 exposures (Fig. 5.4). In particular,
the manganese (Mn) SOD and the copper/zinc (Cu/Zn) SOD were
simultaneously elevated in an O3-tolerant aspen clone (271) following both

long-term and short-term exposures. Because plants have evolved with
numerous oxidative stress tolerance mechanisms, it seems likely that

multiple mechanisms are involved in determining differences in O._
tolerance. However. the molecular and biochemical mechanisms control-

ling the physiological differences in 03 sensitivity of various trembling
aspen genotypes remain largely unknown.

Most 03 exposure research with aspen used open-top chambers (OTCs)
as first described by Heagle et al. (1973). While these chambers are closer
to outdoor environmental conditions than indoor chambers, there is still

a large chamber effect on aspen growth (Hendrey and Kimball, 1994:
Karnosky et al.. 1996). For example, following three years of growth in
the ground, our nonchambered open-plot aspen trees were some 40°.0 less
in height and stem biomass than the Ix ambient 03 chamber trees and

65°/0 less than the charcoal-filtered trees. Characterizing 03 risks to t'orests
based on OTC studies (see Hogsett et al.. 1997) remains speculative
because of the large chamber effects found with trees. It is still unclear as
to whether these chamber effects actually alter response to O_. Future
experiments must address this question (McLeod and Long. 1999).
Additional approaches are needed to examine the impact of O._ on forests
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Figure 5.4. Superoxide dismutase (SOD) activity for three aspen clones (216.
259. 271) grown in charcoal-filtered air and 03 treatment (From Sheng et al.,
1997).

and to examine larger-scale forest community and ecosystem-level
responses that are impossible to determine in OTCs. For example, to
determine the relative growth rates of selected O._-sensitive and O3-tolerant
clones, trees are grown in pots along a gradient from low to high 03 in
southern Wisconsin. With low 03 levels, the sensitive and tolerant clones
generally grow at about the same rate. However. under elevated 03, as in
southeastern Wisconsin, growth is severely restricted for sensitive clones
compared with tolerant clones.

In another study, clones varying in 03 sensitivity were planted in the
field in similarly arranged plantations at areas of high, medium and low O._
in the Great Lakes region. Ozone bioindication plots, competitive

interaction plots, and growth and yield plots were established at each of
the sites with identical sets of aspen clones. Preliminary results have sho_vn
large clonal growth differences related to O_ sensitivity.

Carbon Dioxide

Increases in photosynthesis, individual leaf area. _vhole-cro_vn leaf
area. leaf area duration, and LA[ have been observed in aspen trees

grown in elevated CO_ (Ceulemans and Y,lousseau. 1994: Ceulemans
et al.. 1994: Curtis et at.. 1995). Trembling aspen response to elevated CO2
is similar to that found for other aspen species. For example, researchers
have found significant increases in \_hole-leaf photosynthesis in trembling
aspen trees gro_vn under t_vice ambient CO,, particularly in the lower
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canopy. Leaves in the lower canopy transport C to the roots. Therefore.
substantial increases in relative below-ground C allocation were found in
elevated CO2 (Zak et al., 1993).

Aspen grown under elevated CO, typically have greater tissue C/N
ratios than aspen trees grown under ambient COz (Lincoln et al., 1993). In
addition, concentrations of phenolic compounds, including simple phe-
nolics, condensed tannins, and hydrolyzable tannins, increase in trees
exposed to CO2 (Roth and Lindroth, 1994; Lindroth et al., 1995). Thus,
elevated CO2 may have a major impact on the herbivory of aspen leaves
(Herms et al., 1996).

Ozone and Carbon Dioxide

We know little about the response of forest trees to the interaction of
CO2 and 03. There are suggestions that increasing CO2 may ameliorate
03 damage (Allen, 1990; Taylor et al., 1994). Amelioration is probably
valid for some species (Mortensen, 1995). However, our results with 3
years of study with trembling aspen growing in OTCs suggests that CO_,
at the level of 150 ppm over ambient does not compensate for decreases
in growth and biomass caused by elevated 03 (see Fig. 5.2). In fact,
elevated CO2 plus 03 decreased photosynthetic rates and carboxylation
efficiencies in older leaves in some otherwise O3-tolerant aspen clones
(Kull et al., 1996) and decreased overall leaf size compared to CO_,
alone (see Fig. 5.3). The causes of the lack of compensation for 03 by
elevated COz for aspen have not yet been explained. Some authors
have shown decreased antioxidant activity in the presence of elevated CO2
that might counteract increases in antioxidants found in tolerant clones
(Sheng et al., 1997), but antioxidant levels were similar for both 03-
treated and 03 + CO2-treated aspen plants in one study (Karnosky et al..
1997).

Nitrogen Interaction

Our work with the interactions of CO:, O3, and N fertilization on
hybrid poplars and aspen clones has shown that CO2 enrichment may
compensate for 03 impacts on growth, but the degree of compensation
has both environmental and genetic componepts. To examine some
of these interactions we tested 5 hybrid poplar clones selected for a
range of growth rates in large pots with adequate water and fertilizer in
OTCs, and treated with CO: '--O._ (Dickson et al., 1998). The decrease
in dry weight in response with O3 compared with controls was greater in
the more productive clones (NM-6, 50% and 31.3 g vs. DN-70, 41°3
and 16.5 g). while the increase in dry"weight in response to increased CO_,
(Fig. 5.5) was essentially the same in all clones (NM-6, 36°,; vs. DN-70.
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"_ O'
__4.o). In addition. CO., exposure alleviated the detrimental response to

elevated O_ (see Fig. 5.5). However. the O._ exposure also negated the

increase in growth from CO,.
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In OTCs, we also tested 3 aspen clones that vary in sensitivity to 03. The
water and fertilizer regimes were the same as for the poplar hybrids, but the
aspen were grown in large pots for unlimited root growth and access to
nutrients. Carbon dioxide exposure increased average dry weights 37% and
03 exposure decreased average dry weight 28%. However, there were large
clonal differences in response to CO2 and 03 in combination. Carbon
dioxide exposure of clone 271 increased total dry weight by 71% compared
with controls, while dry weight production from the O3-and CO2 + 03-
exposed plants did not differ. Ozone exposure, however, completely ne-
gated the CO_, response. In contrast, with clone 216 (O3-intermediate) and
clone 259 (O3-sensitive), CO,_exposure increased total dry weight only 20%
while O3 exposure decreased dr?"weight 38% (216) and 50% (259), and the
addition of CO2 to the 03 exposure did not ameliorate yield losses from 03.

In another study of the interactions of CO_,, 03, and N availability, the
clones 216 and 259 were grown in growth chambers, in large pots and with
different N fertilization regimes. In the controlled-access regime, plants
were fertilized daily with a complete nutrient solution based on a 3%
relative addition rate (RAR) (Ingestad and Lund. 1986). The 3% RAR is
designed to maintain these aspen clones at about 2% total plant nitrogen
content but limit maximum potential growth rate (Coleman et al., 1998).
In the unlimited access regime, plants were fertilized daily with a complete
fertilizer solution containing N at a concentration (16 retool) considerably
in excess of maximum growth requirements. When N was limiting growth,
there was no response to increased CO: by either clone; O3 decreased total
dry weight (216, 10% and 259, 35% ). and CO_, added to the O3 exposure
did not ameliorate the 03 response (Fig. 5.6). In contrast, when N was

Liquid Fertilizer

Controlled Access Unlimited Access

.¢8o  oo,•o, T

_: 601 _+c°'+°' -

Q :
_-- 0 ' '

216 259 216 259

Clone Clone

Figure 5.6. Total dr,,' weight of two aspen clones exposed to CO_-. 03. and
C02 + 0,., growing with limiting and excess nitrogen fertilizer (From Coleman
et al.. 1998).
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not limiting growth. CO2 increased dry weight production in both
clones (216, 60°'0 and 259, 49%): O3 exposure had little effect on either
clone (259 decreased 12%). and CO- added to the O3 exposure completely
counteracted the O3 response in clone 216 (actually increased dry weight
production 85% over controls) but did not counteract the O3 response of
clone 259 (see Fig. 5.6). These results indicate that it will be very difficult
to predict average species response to increasing concentrations of CO:
and 03, other environmental stresses, and their interactions, because
genotype has such a large and variable effect on plant responses.
Ecological risk assessment based on a limited number of studies of
seedling populations (Hogsett et al., 1997) cannot account for the
potentially large impact on sensitive genotypes. Risk assessment could
be considerably strengthened, however, if information were available on
the potential range of genotypic response expected within a species
(Taylor, 1994).

Multiple Stresses and Insects

Studies of aspen foliage from plants treated in exposure chambers have
shown that increased CO2 and O3 alter the chemical composition of the
foliage, which in turn influences both its resistance to insect attack and its
nutritional value for insect growth. Using plant material from growth
chamber experiments, we found that elevated 03 generally increased insect
growth, while elevated CO_,generally decreased insect growth. However,
the increase in foliage volume expected under increased CO2 may be
partially offset by increased insect feeding, thus decreasing the potential
increase in tree growth from CO2 (Herms et al.. 1996). Likewise, a decrease
in foliage volume from O3damage may not decrease plant growth as much
if insects consume less foliage from the O3-damaged trees. Lindroth et al.
(1993) demonstrated that light environment affects the dynamics of 03
interactions with insects. Preliminary results from field studies of aspen
show that foliar insect populations increase under 03 and CO2 (Mattson
et al., unpublished).

Yellow Poplar

Yellow poplar is an ecologically and economically important hardwood
species with a wide geographical range (Fowells, 1965). It gro,vs
throughout most of the eastern United States from southern New England
west through Michigan and southern Ontario. At the northern end of i_s
range, yellow poplar is usually found in stream bottoms and valleys at
elevations below 300m fBeck, [990). It is a fast-growing shade-intolerant
species with an indeterminate growth habit. It thrives on many soil types
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but generally grows best on moderately moist, well-drained, and loose-
textured soils. It does not grow well in very dry or very wet situations.

Tropospheric Ozone

Because of yellow poplar's wide geographical range, it is potentially
exposed to elevated levels of tropospheric ozone (O3), the most widespread
and phytotoxic of the atmospheric pollutants on forest ecosystems
(Lefohn and Pinkerton, 1988; Linzon and Chevone, 1988; Simini et al.,
1992). Yellow poplar has been rated as O3-sensitive based on foliar
symptoms and induced leaf abscission and has been used as a bioindicator
(Davis and Skelly, 1992a,b). Although considered O3-sensitive, Simini
et al. (1992) reported foliar stipple injury and premature leaf abscission
without any significant negative growth effects for field-planted yellow
poplar seedlings exposed to ambient 03 in OTCs in Pennsylvania.
Consistent growth responses to 03 have not been reported with this
species because different studies have shown both decreases and increases
in growth (Kress and Skelly, 1982; Mahoney et al., 1984; Jensen, 1985:
Chappelka et al., 1988; Jensen and Patton, 1990; Tjoelker and Luxmoore,
1991; Cannon et al., 1993). Most of the 03 growth and physiological
response studies of seedling yellow poplar have used 1-year-old bare root
stock in environment-controlled systems, such as greenhouses, growth
chambers, or continuously stirred tank reactors (Kress and Skelly, 1982:
Chappelka et al.. 1988; Roberts, 1990; Jensen and Patton, 1990; Cannon
et al., 1993; Cannon and Roberts. 1995). Typical results of such studies
are those of Chappelka et al. (1988) who reported decreases in net
photosynthesis (Pn) and stomatal conductance (gs) in seedlings exposed
to elevated ozone (I00 to 150ppb 03) without growth or biomass effects,
while Jensen (1985) reported relative growth rate was decreased 35°3 in
seedlings exposed to 100 ppb 03 for 20 weeks compared with control
seedlings.

Results from OTC exposures of potted yellow poplar seedlings have
been inconsistent. Tjoelker and Luxmoore (1991) exposed potted yellow
poplar seedlings to 03 ranging from 32 to 108 ppb (7-hour seasonal mean)
in OTCs for 18 weeks and reported no significant effect on Pn, water use
efficiency or, final whole-plant biomass but did report increased leaf
abscission. They hypothesized that the indeterminate growth habit of
yellow poplar permitted compensatory leaf growth which could have
ameliorated O_ effects on biomass production. Rebbeck (1996a) reported
a stimulation in growth and plani biomass after one season of exposure to
107 ppm h-I O_ in OTCs, but after two seasons of exposure, root shoot
ratios and Ieaf area declined with increasing exposure to 03 (Fig. 5.7). Net
photosynthesis of vellow poplar leaves decreased 21 to 42% exposed to 1.7
times ambient 03 compared with control seedlings, while g_was generally
unaffected (Rebbeck and Loats. 1997) (Figs. 5.8 and 5.9). There may be a
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Figure 5.7. The relationship between 03 exposure (ppm h -_) and yellow-poplar
growth: (a) basal diameter growth (ram) in 1990 and (b) total leaf area (ram z) in
1991 (From Rebbeck. 1996a).

significant lag in the expression of growth effects following decreases in C
fixation after exposure to elevated 03. To date. there are no published
reports on the response or"saplings or mature yellow poplar to gaseous
pollutants. Studies are underway to investigate the effects of elevated O_
plus elevated CO. on plantation-grown yellow poplar seedlings over five
growing seasons to determine how this species responds as it ages and
increases in size. The goal is to extrapolate seedling pollutant response
data to saplings and older trees grown under more realistic growing
conditions.
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Carbon Dioxide

Enhanced gro_vth oI" seedling .vello_v poplar exposed to increased concen-
trations of CO: _v:ts found by Norbv and coworkers in the southeastern

United States (O'Neill et al., 1987: Norbv and O'Neill. 1991: Norby et al..

1992: Wullschleger et al., 1992: Gunderson et al.. 1993). O'Neill et al.

(1987) found that newl,v germinated yellow poplar seedlings exposed to
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Figure 5.9. Net photosynthesis (Pn) at light saturation calculated from light
response curves for leaves of yellow-poplar seedlings exposed to either charcoal-
filtered air (CF) or twice ambient ozone (2xO3) during the second season of
exposure (From Rebbeck and Loats. 1997).

692 ppm CO: for 24 weeks in growth chambers had significantly greater
root (99%), leaf (69%), stem diameter (20%), and total dry' weights (73%)
while specific leaf area was significantly less (-21%) than for seedlings
grown in ambient CO2 (367 ppm). Norby and O'Neill (,1991) exposed
fertilized and unfertilized seedlings to ambient. +150 ppm. or +300 ppm
COz for 24 weeks and reported the only increase in dry weight associated
with enriched COz occurred in roots (25 to 402/0). Leaf area was slightly
decreased in elevated CO,. Some of the commonly reported physiological
and growth responses associated with elevated CO,. such as decreased
stomatal conductance (g,) and photosynthetic down-regulation'acclima-
tion were not consistently observed in these studies. In fact. stomatal

conductance and Pn increased with increasing COz concentration through-
out the stud.,,. Nutrient deficiency did not impede growth enhancement in
enriched CO:. In :t subsequent 3-year OTC study of field-planted.
unfertilized and t, nirrigated yellow poplar seedlings exposed to elevated

CO2. Gunderson et al. (19931 found no photosynthetic down regulation (12
to 14407, enhancement) and limited effects on ¢, These responses were

consistent across leaf age and canopy position. Foliar total chlorophyll
_ '_ , 1-t _ 24content was decreased 27 oo in seedlings exposed to --._ )0 ul CO, for

weeks. Significant decreases in respiration or" foliage exposed to elevated
CO2 were also observed {Wullschleger et al.. 1992). Despite observed
enhancement in leaflex el P_ and lower rates of leaf respiration, whole-plant
biomass production did not increase INorbv et al.. 1992). The.,,' suggested
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that the lack of above-ground response resulted from changes in C
allocation patterns that decreased leaf production and increased fine root
production.

Ozone and Carbon Dioxide

To predict how yellow poplar might respond to future climate changes.
a 5-year OTC study to investigate the response to enriched CO_, in the
presence of elevated 03 was conducted in Delaware, Ohio. It was
hypothesized that negative 03 effects would be ameliorated by exposure to
elevated CO,_, and that the response of older trees to these atmospheric
gases would be similar to seedlings. Throughout the study, most of the
typical enhancement responses observed were associated with exposure to
enriched CO_,, with few or no effects associated with exposure to elevated
03 (Rebbeck, 1996b). After the first season of exposure (20 weeks), no
impacts on stem height or basal diameter were observed in seedlings
grown in twice ambient 03 (2xO3, cumulative exposure of 136 ppm h-l)
(Table 5.2). Basal stem diameter of seedlings exposed to twice ambient
03 + twice ambient CO2 (2xO3 + 2xCOz) increased (13 to 21%) com-
pared with seedlings grown in charcoal-filtered, one times ambient (IxOz).
or 2xO3-air (Rebbeck, 1993; Rebbeck et al.. 1993). Stimulated height and
diameter growth of yellow poplar exposed to 2xO3 + 2xCO2-air continued
for three growing seasons (Rebbeck, 1996b). After two years of exposure.
2xO3 + 2xCO2 grown yellow poplar tended to have greater leaf (6%), stem
(25%). branch (14%), and root (20%) biomass, and total leaf area (12%)
compared with all other treatments. Photosynthetic enhancements (24 to

Table 5.2. Total Stem Height and Diameter of Yellow Poplar Seedlings Exposed
to Ambient and Elevated O3+Elevated CO- in Delaware, Ohio. from 1992
through 1994

Treatment Total Stem Height (cm)

1992 1993 1994

CF 94.85 = 3.14a 274.97 -- 10.36a 365.9 - 20.8a
lxO_ 90.84 = 4.44a 267.35 = 8.66a 343.9 ; 20.2a
2xO3 96.89 = 4.08a 285.44 = 8.43a 382.2 = 24.3a
2xO3 -:- CO- 102.88 - 5.04b 304.70 = I0.47b 460.0 - ll.lb

Treatment Basal Diameter (ram)

1992 1993 1994

CF 9.85 = 0.5a t3.99 = 0.78a 45.17 = 2.73a
lxO_ 8.93 = 0.Sa 29.24 = 1.39a 39.46 = 3.37a
2xO3 9.47 = 0.5a 29.71 = 1.17a 43.85 = 2.98a
2xO3 - CO: 11.33 = 0.Sb 34.4I = 1.61b 53.94 = 3.18b

* Each value is a mean of 36 trees = I standard error 5,leans iollowed by different letters
are significantlydifferent at P < I).05(Rebbeck, 1996b_.
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poplar foliage exposed to elevated 0__ (1.3 x ambient ozone) alone or in
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(From Carter et al.. 19951.

48%) were observed for seedlings exposed to 2xO._+ 2xCO2-air for one
and two seasons (Rebbeck et al., 1995: Rebbeck. 1996b). while foliar chlo-
rophyll (Fig. 5.10) and N content decreased (Carter et al., 1995: Rebbeck
et al., 1995: Scherzer and Rebbeck, 1995). After four seasons of treatment.
O_ alone had no effect on foliar N concentrations: however,
2xQ+2xCO2-air decreased N concentrations by 18 to 40% (Scherzer
et al.. 1995). Preliminary analyses indicate, after 5 seasons of exposure,
continued enhancement of growth and photosynthesis in 2xQ-2xCO2-
air. Because there were limited O_ effects on the growth or ph?siology of
these seedlings, it was difficult to ascertain the amelior_ttive effects of
enriched-CO2. Most of our enriched-CO2 responses observed in Ohio were
similar to those reported in the southeastern United States INorby and
O'Neill. 1991: Norby et al.. 1992: Wullschleger et al., 1992: Gunderson
et aI.. 1993). These findings suggest that field-planted ,yellow poplar. _vhen
exposed to enriched CO, and grown with limited nutrients, limited soil
moisture, and ambient or elevated O._ will display enhanced gro_th and
photosynthetic assimilation.

.Nitrogen ttnd VVctter

Little direct ini"ormatiorl on the gro,,vth and physiology of vello,.v poplar is
a,._iluble in response to CO- and 03 combined with x_ater stress and
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nitrogen stress (limited or excess). However, the influence of water stress on
modulating the response of yellow poplar to 03 has been studied (Roberts.
1990; Cannon et al., 1993; Cannon and Roberts, 1995). In growth chamber
studies, water stress significantly decreased Pn, g_, and transpiration (Ts)
(by more than 70%) but 03 treatments generally had little effect on
physiological or growth parameters. The combination of water stress and
70 ppb 03 significantly decreased root biomass and root/shoot ratio
(Cannon et al., 1993). Roberts (1990) reported a significant additive effect
of drought and 03 on xylem water potential. These studies indicate that
significant interactions involving low levels of 03 and short periods of
water stress may have considerable effects on stomatal physiology. Tjoelker
and Luxmoore (1991) reported that yellow poplar whole-plant dry weight
did not respond to either O3 or N (levels ranging from 58 to 172 I.tgg -t) but
allocation to fine roots did increase in low-N soils.

Eastern White Pine

Eastern white pine is a widely distributed component of the eastern US
forest and is the largest of the northeastern conifers (Fowells, 1965). White
pine has played an important role throughout our history as the "'peace
tree" of the Native Americans and as a valuable source of lumber for

construction of eastern and midwestern cities. It also is important
ecologically because it rapidly invades old fields and is intimately

associated with oaks (Stine and Baughman. 1992). White pine has long
been known to be sensitive to multiple environmental stresses (Kozlowski.
1979), although there are fewer published works on the interacting stresses

on white pine than on aspen and yellow poplar. An exception is the
pioneering work of Dochinger et al. in the USDA Forest Service.
Northeastern Forest Experiment Station in the 1960s who studied the
interactions of sulfur dioxide and tropospheric O__as influenced by other
environmental factors (Dochinger et al., 1970: Houston. 1974).

Tropospheric Ozone

White pine's sensitivity to O._ has been known for many )'ears (Kozlowski
and Constantinidou. 1986a). When white pine experiences acute O._
episodes, its current-year needles develop silver flecks and tip dieback
("tipburn") IWoodman. 1987). Chronic symptoms include chlorosis and
premature needle abscission of older needles. High 03 levels throughout

the southeastern US have been shown to cause extensive damage to white
pine on a watershed scale, including premature needle abscission and
decreased basal area increment (McLaughlin. 1985: Swank and Vose.

1990). Moreover. McLaughlin et al. (1982) sho_ved that chronic O._ stress
caused declined vigor, increased respiration, and altered C allocation
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patterns in field-grown white pine. However, Bennett et al. (1994) in
a review of air pollution surveys of white pine found that hypersensitive
white pine individuals are no longer present in the forest because they have
succumbed to past 03 exposures. More recent tree-ring studies, in Acadia
National Park, Maine, suggest white pine tree-ring growth is affected
negatively by 03 level and duration (Bartholomay et al.., 1997).

As in aspen, white pine has a high degree of genetic variability in
response to 03 (Houston and Stairs, 1973). Karnosky (1981) found
a higher mortality rate in O3-sensitive genotypes of eastern white pine
stands in southern Wisconsin. That study indicated that natural selection
may have already altered many stands in higher 03 regions of the
Northeast. To examine possible genetic differences between white pine
from 03 selected (sensitive genotypes lost) and nonselected regions, a large
cooperative study was initiated by a consortium of scientists from
Michigan Technological University; USDA Forest Service, North-
eastern Forest Experiment Station, and the USDA Forest Service.
North Central Research Station to compare the responses of seedlings
from Ohio (where 03 levels have been historically high) and from northern
blichigan (where 03 levels have been historically quite low). Seedlings
from these two locations were exposed to ambient 03 (IxO3), twice
ambient O._ (2xO3) and 2xO3 + elevated CO, in OTCs at 2 locations: a

clean-air site in the upper peninsula of Michigan and a relatively high O_
site near Delaware. Ohio.

At the Alberta, Michigan site, we found no significant differences
in height, stem, root. or current year needle biomass in response to the
O3 treatments, but there were significant 03 effects on diameter growth
and mature needle retention for the Michigan source but not for the
Ohio source. At the Ohio site. 03 had a small stimulating effect on height
growth of white pine in the first year. However. after 3 ,,ears. there was no
significant effect on height or diameter growth from 2xO3 (Rebbeck.
1996b).

Carbon Dioxide

Little is known about the effects of elevated CO-_ on white pine. In three
recent reviews of the CO2 literature (Ceulemans and Monsseau. 1994:
Curtis. 1996: Wullschleger et al., 1997), only one reference was cited.

Bazzaz et al. (1990) reported a 2000 increase in biomass growth, a 14°o
decrease in leaf area. and an 11% increase in root shoot ratio with

elevated CO_, in a glasshouse experiment with white pine seedlings.
Although there is essentially no int'ormation on the response of white pine

to elevated CO_,. white pine can be expected to respond like other conifers
and C3 plants with increases in photosynthesis, biomass, and water use
efficiency and decreases in N content (Conro.v and Hocking. 1993:
Ineichen et al.. 1995: Wullschleger et al.. 1997).
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Ozone and Carbon Dioxide

Very little research has been done on the interacting effects of 03 and CO,
on white pine. The only available information on the combined effects of
03 and CO2 on white pine is from the cooperative OTC experiment in
Michigan and Ohio. At the Michigan site, in the first two years after
planting, O3 decreased needle length compared with the charcoal-filtered
(CF) treatment, while the needle length in the 03 + CO2 treatment did not
differ from the CF treatment. This result indicates that CO2 may offset

some detrimental effects of O3. After four years of growth in the OTCs, 03
increased the loss of older needles and decreased total plant dry weight.

Carbon dioxide in the 03 + CO2 treatment partially counteracted needle
senescence and increased stem dry weight and total plant dry weight

compared with both 03 and the CF treatment.
At the Ohio site, there were no significant growth differences attribut-

able to 03 + CO: in the first 4 growing seasons. There was a slight

stimulatory effect of 03 + CO2 in height growth in the first year, but in the
second year height was less than the control. In th.e second year, 03 + CO2
stimulated photosynthesis compared with the 03 and control treatments.
Chlorophyll content of the older needles was decreased by 03 + CO_- b,v 40
to 50% compared with the controls. Despite these physiological differen-
ces, no significant growth effects were detected with 03 + CO2 compared
with other treatments (Rebbeck, 1996b).

Nitrogen and Other Multiple-Stress Interactions

There have been few studies of the effect of N on white pine's response to

interacting multiple stressors. We would expect low nitrogen availability
to limit the effect of CO: on white pine as in other plants (Conroy and

Hocking. 1993). Moreover, we would expect low nitrogen availability to
increase the detrimental effects of 03 on white pine growth. Eberhardt

et al. (1988) found no effect of N fertilizer on the 03 response in white pine
and Reich et al. (1988) found that increased N from acid rain in
combination with 03 had a deleterious effect on white pine growth

depending upon soil conditions in a microcosm experiment. In a related
study', Stroo et al. (1988) found that acid rain (i.e., lower pH) and 03
exposure decreased mvcorrhizae infection and therefore nutrition in white
pine. McLaughlin (1985) reported that the interactions or" 03 and SO:
atmospheric pollutants were primary causal agents in white pine decline
in the eastern US. while genetic variation accounted for a 5-fold

difference in the response to the interacting stressors. No reports of the
effects of interacting stressors on pest and disease incidence in white pine
are currently available. Based upon the research to date. we would expect

significant multiple-stress pest interactions in white pine as found in our
other species.
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Summary and Future Direction

The interacting effects of multiple stresses on growth and physiological
processes in northern forest trees are complex, and the mechanisms of
sensitivity to the combinations of multiple stressors remain unknown.
There are major differences among species and genotypes within species in
their responses to various interacting stressors. Aspen is particularly
sensitive to elevated O> CO_,, and their interactions, while hybrid poplars,
yellow poplar, and white pine vary in sensitivities. Nutrition has an
important effect on the response to multiple stressors, with poorer
nutrition usually predisposing plants to the effects of other stressors.
Multiple stressors also have an important effect on ecological factors such
as insect feeding that deserves more attention.

To date, most studies of multiple-stress interactions in trees have been
conducted on small trees growing in pots and/or in controlled environ-
ments and OTCs. Such experiments cannot incorporate the host of biotic
and abiotic interactions that occur in a forest ecosystem (Koch and

Mooney, 1996). Large-scale field experiments are needed in the future to
minimize chamber effects and better depict "'real world" conditions
(Hendrey and Kimball, 1994; McLeod and Long, 1999). To accomplish
the goal of studying the interacting effects of multiple stressors on
physiological processes and growth of northern temperate forest ecosy's-
terns, we have initiated a free air carbon dioxide enrichment (FACE)
experiment in Rhinelander, Wisconsin, to examine the interacting effects

of elevated CO2 and O3 on physiological processes (C and N allocation)
growth, survival, and competition of pure and mixed stands of aspen
clones, sugar maple (.4cer saccharum Marsh.), and paper birch (Bet,da
papyifera Marsh.) (Karnosky et al.. 1999). This study design consists of
twelve 30 m FACE rings--a factorial combination of 4 treatments
(ambient control: 560 ppm CO,: 80 to 100 ppb 03: and CO2 + O._1 with
three replications. The FACE technology features a vertical vent pipe
delivery system equipped with banes as well as a centralized 03 delivery
system. This experiment offers the opportunity for an interdisciplinary
team of scientists to study the mechanisms of interacting multiple-stress
effects on a larger scale. This approach is expected to lead to a better
understanding in the future of forest ecosystem responses to the ever-
changing complexities of the environment.
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