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SYSTEM IDENTIFICATION PRINCIPLES

IN STUDIES OF FOREST DYNAMICS

ROLFE A. LEARY

This paper is directed at the following problem: Given observational data on a dynamic
system, what are the equations governing its behavior? This is known as a system identifi-
cation or inverse problem, and in its broadest sense involves both unknown algebraic form
and numerical constants in the governing equations. Clearly, knowledge of the exact, or

even approximate, equations governing a system makes effective control a realistic possi-
bility. The ability to control a dynamic forest system is of concern in the manv instances

where man has developed preferences for certain system states and is prepared to take ac-
tion to ensure their existence.

Methods of dealing with both types of unknowns are discussed. The first part concerns
concepts that are helpful in rationalizing the algebraic form of the governing equation
right-hand sides. The second part deals with parameter estimation. The only type of gov-
erning equations considered are linear and nonlinear first-order ordinary differential equa-
tions.

The methods of regression analysis, so widely used in modeling forest systems, are not
used in this study. In a traditional regression approach one is attempting to solve two

problems simultaneously. First is that of modeling the causal mechanisms of obser,'ed sys-
tem behavior. Second is the problem of making inferences about the population from
which the observed systems were selected. Regression methods are particularly inadequate
for the first problem. Thus, the above problems are treated separately, attention being given
to the first.

The approach used here is to transform the problem from one of having several observa-
tions through time on a forest system in some inconvenient tabulated form to one of hav-

ing a single point located in state space corresponding to the system state at each observation.
This is essentially a problem of trajectory identification. It can, in many cases, be solved

by considering it as a muhipoint boundary value problem of differential equations and ap-
plying the computational procedure called quasilinearization (BelIman and Kalaba 1965,
Lee 1968). The approach used here in state space is entirely analogous to that used in phys-
ical space for such problems as orbit determination (Bellman 1962).

It is assumed that the reader is interested in developing mathematical models of forest-
system dynamics. The level of mathematics is variable. As a rule, the lowest level of math-

ematics that conveys correct meaning is used. Most of the concepts and techniques
discussed are not new; they ha_,,e been gleaned from numerical analysis, numerical meth-
ods, differential equations, mathematical analysis, control theory, and general systems theory.

In anticipation that some readers may not be familiar with these subjects and how they
relate to the problem of modeling dynamic forest systems, each topic is discussed verbally
and related to example models. No attempt is made at an exhaustive treatment. Instead,
the emphasis is on synthesizing the concepts into a comprehensive, workable scheme.

In the following discussion the assumed goal is to develop governing equations for the

standing crop in northern hardwood forests. Plot data fi'om the Argonne Experimental
Forest in northeastern Wisconsin are used.
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GENERAL CONCEPT OF A SYSTEM

The past decade or two has witnessed tile evolution of a holistic or systems approach to
the study of complex entities. During this time the forester's ability to talk and write about

systems has in some cases outdistanced his ability to quantify or model them. The concepts
and techniques that follow may help to fill !the gap in modeling dynamic forest systems.

The success of the approach hinges on successfully combining the following: (1) the

researcher's knowledge of the biological processes involved in the system he is studying,
(2) his ability to quantify these processes, and (3) the ability of the digital computer to do
the calculations necessary for successful solution of the inverse problem.

Initially, a proper definition of the entities involved is required. The following defini-
tion suits the purposes well (Hall and Fagen 1956). "A system is a set of objects together
with relationships between the objects and the attributes." Objects are the parts or com-
ponents of a system and attributes are properties of objects.

This study is concerned with modeling the primary production of forest systems. Al-
though only the vegetative portion of the ecosystem is modeled, the theories and methods

discussed are applicable to ecosystem production in general. Due to the limited historical

data available, the examples given deal only with the component capable of producing mer-
chantable timber.

Thus, what is being modeled is a subsystem of the total vegetation system. Where does
one draw the line or boundary for his system? It is helpful to place system boundaries at
natural breaks in the hierarchy of systems. Thus, the system may be restricted to all vege-
tation of species capable of producing merchantable timber in the northern hardwood

forest. But, this would be an unnatural boundary. Hence, our system includes all woody
and herbaceous vegetation in the northern hardwood type even though our examples, for
reasons stated previously, consider only timber species.

CHARACTERIZING SYSTEMS

A meaningful discussion of alternative methods of characterizing systems presupposes a
well-defined end objective. Usually the interest is in gaining insight into the system's inner

workings and developing a predictive capability, via a mathematical model. A logical be-
ginning would be to characterize a system by its components. In the examples from later
sections, where the vegetative portion of the ecosystem is treated as a system, components
may be defined on the basis of taxonomic criteria, physical size or function (in the distribu-
tion and accumulation of energ'y), or by some combination. For example, an individual
plant, species, diameter or height class, or species x diameter class may be considered as a

system component. Clearly, the number of possible ways of defining system components is
enormous. For the purposes of this study, where our interest is in system productivity, a
combination of physical size and function was deemed most desirable.

Once the components for the system have been defined, a question arises as to what attri-

bute should be used to characterize each component. A most elemental approach would be
to use presence or absence of qualifying individuals as the component attribute. A next
logical refinement would be the frequency of occurrence of qualifying individuals. For eco-

logical succession studies this level of refinement might be suitable. In productivity studies,
it is still too elemental for reasons that will be evident in the section on dynzunic models.

Having gone from the binary (1-present: 0-absent) level to the discrete (positive integers),
any further refinement necessitates passing to the continuous. This method of describing sys-
tem components is common; basal area of qualifying individuals is an often-used attribute.

In later examples, sum of diameters of trees in each component is used.
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One could, of course, go further and compute volume from diameter (d.b.h.) and height
and use this as the attribute. The advisability of the last step is questionable, however. As a

general rule, component attributes should be the most elemental measures of individuals in
the component consistent with the type of model used.

To summarize briefly, then, a system is comprised of objects or components and each com-
ponent may be characterized by various attributes.

At this point it is convenient to use a slightly different approach, and consider the system

components as coordinate axes of an abstract space --called state space. The component at-
tributes specify the system location with respect to each coordinate axis. All system com-
ponents plus their attributes specify the system location in state space, and are called state
variables.

In later examples, species group (based on shade tolerance) and size (diameter class) were
used as the basis for delineating the system components. The size attribute selected was sum
of diameters. Thus, sums of tree diameters at breast height in each species group x diameter
class are the state variables. Of course, the units in which each is expressed need not be the
same. That is, the first m state variables may represent standing crop of m browse species and

be expressed in pounds per acre, the m + 1... n variables may represent standing crop
in timber species and be expressed in inches of diameter for all qualifying individuals. The
variety of expressions are, obviously, limited only by the user's needs. It is not at all difficult
to conceive of system components numbering into the hundreds. Theoretically, the more state
variables employed, the more refined the characterization of the system will be. However, in
practical applications, one must strike a compromise between increasing realism and de-
creasing tractability as the number of variables increases.

The state variable approach to system characterization is well established in engineering
and control theory (De Russo et al. 1965). There is much to be gained in terms of concise-

ness of expression and ease of mathematical analysis of forest systems b,v its adoption in our
work. The combination of a state variable formulation of forest systems with the versatility
of systems of nonlinear differential equations makes a powerful predictive scheme. The re-
mainder of this paper, then, uses a state variable approach to forest system modeling.

DYNAMIC SYSTEMS

An underlying objective of this paper is to develop a capability of predicting system devel-
opment through time; hence, the concern is with dynamic systems. But first it is instructive to
consider a static system.

Take for example a system with state variables YI and Y2. The system state is given,

then, by the ordered pair (Y1, I"2). The only type of systems of interest to us are inter-
active ones, that is, where the variable Y1 affects and is affected by Y2. Thus, a static inter-

active linear model is given by the system of simultaneous equations

allY1 + a12Y2 = b 1
(1)

a21¥1 + a22Y2 = b 2.

The system state is given by the values of Y1 and Y2 that satisfy these equalities.

3



The primary concern here is the differential equation formulation of system development

through time, and the discussion that follows deals with it exclusively. As a means of in-

troducing this formulation, consider a system characterized by a single state variable; i.e.,

the scalar case. The equation that specifies the instantaneous rate of change, with respect
to time, in system state takes the form

dY/dt = f(Y,t) (2)

where f is a suitably chosen function,
Y is the dependent variable, and
t is time, the independent variable.

The actual state, as opposed to rate of change of state, is obtained by solving equation
(2) for I¢.

What are the possible forms the function / may take? In general, they may be as follows:

(a) dY/dt = O. (3)

This seemingly uninteresting form, in the context of a system of equations, is very useful,

and is used extensively in the later sections on parameter estimation.

(b) dY/dt = f(t). (4)

This form, which states that rate of change in Y is dependent only on time, is used exten-

sively in engineering and other physical sciences, but in the context of open systems of

living organisms it is of limited usefulness.

(c) dY/dt = g(Y). (5)

This equation states that the rate of change of Y is a function solely of the amount present

of II, and is the form of most biological growth functions.

(d) dY/dt = h(Y,t). (6)

In the case of equation (6), rateof change in Y isrelatedto both amount presentof Y
and time. No further reference is made to this form.

In this study functions/¢ and g are points of beginning and are not, in the case of f, ob-

tained by differentiating some other function F with respect to time. This approach al-

lows use of differential equations of the form (4) and (5) regardless of whether their

solutions may be expressed in closed form. The approach is one of selecting a function of

the form f or g that has the desired qualitative properties (see section on "Some Qualit-

ative Properties of System Equations"), and describing the system on that basis, without

regard to the closed form expression for F or G if such form does, in fact, exist. G is under-

stood to be the closed form solution of equation (5).

Some most used forms of g and the names commonly associated with them are:

= y2g a + b Y (7) logistics, autocatalytic
A

g = a Y In(_) (8) Gompertz

g = a yC + bY (9) yon Bertalanffy,
Chapman-Richards.
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Equation (9) is a special case of what is called the Bernoulli equation; i.e., a nonlinear
equation of the form

dY/dt + Q(t) yn = R(t) Y. (i0)

The lo_stics equation has Q(t) ---a, R(t) = b, and n = 2.

The Bernoulli equation is one of the few nonlinear equations that may be solved in

closed form. This is accomplished for the von Bertalanffy function by first substituting

Z = yl-c

in (9), which gives

dZ/dt = (l-c) y-C (a yC _ b Y)

= (l-c) (a - b yl-c)

= (l-c) (a - b Z). (ii)

Equation (11) is linear in the variable Z and may easily be solved (see page 14). Once
the solution in Z is obtained, it is expressed in terms of Y; i.e.,

y = zl/(l-c)

To this point, the discussion has been of a system described by a single equation. This
approach is, of course, not new. The following observations and contrasts of examples
from the literature may be made. In many cases the investigators dealt exclusively with the
function G--i.e., the solution of the differential equation--and only incidentally men-
tion that it was the solution of a particular differential equation. Naturally, this meant they
were dealing only with equations having solutions expressible in closed form. In a more re-
cent approach 1 the differential equation was fit to observational data, and the solution was
obtained analytically.

Let us consider the case where Y is a vector (or an ordered n-tuple of numbers). Only
through this treatment can the full benefit of the state variable approach be reaped.

Our model may have the following form:

dY1/dt = fl(Y1,Y2,Y3 .... ,Yn,t,a,b,c ..... )

dY2/dt = f2 (Y1,Y2,Y3 ..... Yn,t,a,b,c ..... )

• (12)

dYn/dt = fn(YI,Y2,Y3 ..... Yn,t,a,b,c ..... )

where Yi, i = 1,2, ... ,n are the dependent variables,

t is time, and

a,b,c, ... are parameters of state such as soil

and climate (Lotka 1928).

I Moser, ]. W., It. Growth and yield models [or uneven-aged /orest stands. (Unpub-
lished Ph.D. thesis on file at Purdue Univ., La/ayette.)
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Because a,b,c . . . are usually time invariant, they may be dropped, leaving

dYi/dt = fi(YI,Y2,Y3, ... ,Yn,t), i = 1,2.... ,n. (13)

If equation (13) is modified further by eliminating t from the right-hand side,

dYi/dt = fi(YI,Y2,Y3..... gn), i = 1,2..... n. (14)

This is called an autonomous system of equations. All the examples that follow are in terms
of autonomous systems of equations.

Equation (14) states that the rate of change of state variable Y1 may be a function of

the amount present- in our case standing crop- in YI,Y2,Y3, . . . , Yn, and likewise for
the other state variables Y2,Y3,Y4, . . . Yn. It follows from this formulation that system

development, as reflected by changing state variables, is influenced by system position in
state space. In the context of the later examples, a model such as (14) indicates the diam-
eter growth of individuals in a specific diameter x species group class may be influenced
by the amount present in each (or none) of the other classes, depending upon the form of

the [i, i = 1,2,3, . . . n.

Returning to the question concerning the origin of the functions [i, the system of equa-
tions (14) is a point of beginning. This being the case, it is clear that the researcher must
rationalize the form of the right-hand sides (r.h.s.) of (14) on the basis of his knowledge of
the processes involved. Two general principles in this regard are: (1) the r.h.s, of (14)
should possess qualitative properties, individually and as a set, that. do not violate biological
principles, and (2) the r.h.s, of (14) should reflect tile causal pathways between interacting

parts of the forest system.

The process of rationalizing the form of the r.h.s, of (14) may conveniently be broken
down into two phases: (1) specifying the state variables that should be included in the
r.h.s, of each equation in (14), and (2) specifying tile algebraic form of the relationships
between the state variables selected in phase 1.

An example of phase 1 from Darlington Woods in Indiana follows: z The problem is
rationalizing the r.h.s, of an interactive dynamic model that has timber size classes as system

components.

The biological basis for the r.h.s, is that of competition for the ecosystem resources of
space and light (solar radiation). It is based on the following two premises: (1) the
amount of light (relative to full sunlight) received by a forest system (stand) component
affects its growth and development, and (2) the amount of solar radiation received by a
forest stand component is primarily a function of its position in the stand.

If a stand is uneven-aged with resultant diversity in tree size, the trees in the lower strata
receive radiation of a different intensity and quality than trees in the overstory. If a stand is

even-aged, a larger percentage of the trees receive nearly the same intensity and quality
radiation because they tend to be more nearly the same height.

2 Leary, R. A. A multidimensional model o[ even-aged [orest growth. (Unpublished
Ph.D. thesis on file at Purdue Univ., La[ayette.)
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It iS constructive to consider tt_is prol_lem in the rnanner of tIutchinson (1937 in terms

of the relationships between ecological nict_{,s of potential competitors. An ecological niche

is ta._c defined as all (_f the ecosystem res_urcc Ic\cls ttmt a species is currently capable of

t_sing, tItltcl_inson 19,57_ distinguist_es two types of nicl_es. The fundamental niche of a

partict_lar forest component is all of tl_e ecosystem resource levels that a component is

capable of using at the present tinm in the absen/_e of competition. The fundarnental niche

of a particular forest component may thus be shown as a region or set of values in space,

the co-ordinate axes of which correspond to tlm various resources. If only two ecosystem

resources are considered, the fundamental niche may be shown as a region in the x - ), plane.

.. The concept of a realized niche arises when competition for ecosystem resources exists.

The realized niche of a competitor may be defined as the set of ecosystem resource levels it

is capable of using and has available for use free from competition. It may also be defined
as the fundamental niche minus the intersection subset.

If N, is the fundamental niche of forest component ¥1, and N.., is the fundamental niche

of forest component I72, the realized niche of component 171 is

NI - {NI _ N2} = P_NI. ({NI I_N2} is the set of all
ecosystem resource levels (a,b) that are simultaneously
in both sets N1 and N2.)

Likewise, the realized niche of component Y2 is

N2 - {N1 F_ N2} = RN2.

Of special interest is .(N_,"?N.,), = N,,. In such cases, RN_ = 1--], where 1--] is the null iLempty)
set. A similar condition could, of course, exist for N_; i.e., RN_ = [-].

The two ecosystem resources that were used as a basis for the model may be show.n

graphically as a region in two-dimensional space (Miller 1967) (fig. 1). Let us assume

the diagonally hatched area represents the set of light and space resource levels that stand

component Y1 is presently capable of using in the absence of competition. This area there-

fore represents the fundamental niche of 171.

If the horizontally hatched area is the set of space and light resource levels that stand

component 172 is capable of using in the absence of competition, it is the fundamental

niche of component Y2.

It is clear from figure 1 that the fundamental niche of the lower stratum component

(I"2) is a proper subset of the fundamental niche of the larger component (YI'/. Miller

(1967) describes two possible outcomes of competition between components 171 and I'2

where N._ C N,. The first is where competition proceeds in favor of 171 anct given adectuatc

time, only Y1 survives. The second is where Y2 survives in all regions of the .v-)' plane

corresponding to N, C N._, and both components survive.

The hypothesis underlying the proposed model is that ttm growth and developn_ent of a

stand component is influenced by the amount of the contained component present, and

the amount of the containing component(s) present in the stand.

Thus, for stands comprised of n components, if Yi indicates the amount of the i th stand

component and if N i indicates the fundamental niche of the z"th component, and if

N1 (2:N 2 and N1 C N3 and N1 I:2 N4 and ... N1C2 Nn, then

dYl/dt = fI(Y1,Y2,Y3 ..... Yn).
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Figure 1.- Fundamental niches N1 and N2 of stand

components Y1 and Y2 relative to ecosystem re-
sources of space (Y) and light (X).

Likewise, if

N2C N3 and N2C N4 and N2C N5 and ... N2c Nn, then

dY2/dt = f2(Y2,Y3 ..... Yn).

If we continue in this manner and consider a model for a pure stand divided into five
height classes (components),

dYl/dt = fI(YI,Y2,Y3,Y4,Y5)

dY2/dt = f2( Y2,Y3,Y4,Y5)

dY3/dt = f3( Y3,Y4,Y5) (15)

dY4/dt = f4( Y4,Y5)

dY5/dt = f5( Y5)

where Yi is the standing crop in the ith height class,
Y1 is the shortest component, and
t is time, in years.

Implicit in the above argument is that the understory does not affect overstory development.

This is, of course, not universally true.

As an example of phase 2 applied to a reduced system, consider a simple linear additive

relationship between components, such as

dYl/dt = allYl + a12Y2 + a1323

dY2/dt = a22Y2 + a23Y3 (16)

dY3/dt = a33Y3

or nonlinear multiplicative relationships such as

8



dYl/dt = (allYl a12 + al3Yl ) ea14Y2 + a15Y3

a24Y3
dY2/dt = (a21Y2 a22 + a23Y2) e (17)

a32
dY3/dt = (a31Y 3 + a33Y3).

One must often compromise between a desire for the realism that would favor equation

(17), and the often limited availability of historical data that would favor equation (16).
Involved is the question concerning the evolution of r.h.s, from first approximations based
on limited data to more refined r.h.s, as more information is gathered concerning the pro-

cesses involved. It has been suggested that there is a need for a dynamical yield (standing

crop) function revised periodically to incorporate results from new practices (Moser and
Hall 1969). This may invoh'e updating parameters as well as substituting more realistic
r.h.s.

SOME QUALITATIVE PROPERTIESOF SYSTEM EQUATIONS

Earlier is was stated that " . . . the researcher must rationalize the form of the r.h.s.

• . . on the basis of his knowledge of the processes involved." It is not sufficient to simply

hypothesize a governing equation form and then test it with observational data. A valuable
and potentially enlightening first step is to examine the behavior of governing equation
solutions to eliminate from further consideration all equations that violate irrefutable bio-

logical "laws." Because the goal in rationalizing the governing equations is to identify the
causal pathways of system component interaction, nonviolation of these biological "laws"
is a necessary, but not sufficient, condition for attaining this goal.

It is instructive to ask what, in terms of a system model, is measured. Certainly param-

eters are not measured directly nor is instantaneous change. Rather, the standing drop

(system state) or some attribute thereof is measured. Because the solution may not be ex-
pressable in closed form, the following discussion is concerned with inferring qualitative

properties of governing equation solutions from the r.h.s, of the governing equation. One-
" dimensional models are discussed first.

The properties the solution should possess are often apparent. For solutions describing un-
disturbed standing-crop development, such as standing crop in survivor trees, these prop-

erties might be required: (1) nonnegativity for nonnegative values of the independent vari-
able, (2) upper boundedness for nonnegative values of the independent variable, and (3
monotonic nondecreasing for nonnegative values of the independent variable. CIearIy, prop-

erties (2) and (3) imply an upper asymptote. If property (t) was extended to include ail
values of the independent variable, then (1), (2), and (3) imply an upper and lower

asymptote.

If the discussion is extended to include standing crop development in general, not ._ust

survivor standing crop, there is no universal agreement on the suitability of an upper asymp-
tote. MacKinney et al. (1937) state, "... the yield (standing crop) curve is limited be-
tween zero . . . at inception and a finite maximum . . . at that advanced age before the
stand commences to break up." Implicit is that the amount c,f standing crop does not re-
main at the maximum level indefinitely.

o If it does not remain at the maxhnum (as}Tnptotic) level indefiniteIy it may decrease

monotonically or through oscillations. A decreasing standing crop is not considered in this

study.

9



Let us discuss solutions of one-dimensional models, types given by equations (4) and

(5), in terms of properties (1) (2) and ,.7). As an example of ttm form in equation 1'5)

consider equation (9), and for form in equation (4) consider a polynomial approximation
to a current annual increment curve such as equation (18),

dY/dt = at2 + bt + c (18)

a<O, b >0, c >0.

Consider the requirement that the solution be nonnegative. In the case of equation (9) ; i.e.,

dY/dt = a yC + b Y

a<0, c >0, b >0,

it is clear that given a positive initial condition, standing crop cannot be negative. If Y ever
becomes zero, it cannot deviate from zero. Equation (18) contains no such restriction, how-

ever, and standing crop may be negative.

Consider next tile property of upper boundedness. How is this property of the solution

inferred from equations (9) and (18)? Clearly, boundedness is a property of the solution

of (9) if at any point

a yC + b Y = 0 (19)

The upper bound corresponds to the value of Y at which equation (19) is true. In equa-

tion (18), standing crop at time t_ corresponds to tile area under the polynomial curve
between t = 0 and t = tl. Upper boundedness is a property of the solution if a <. 0.

This will generally be the case; hence, equations of tile form (18) possess upper bounded-
ness.

In many cases, especially when tile state variables represent physical dimensions of surviv-

ing trees, the solution should possess a monotonic increasing character, hence, property (3).

How is this property reflected in governing equations such as (9) and (18) ? Monotonicity

is a property of tile solution if the r.h.s, of the governing equation is greater than zero for
all t :_ 0. In the case of equation (9), it cannot be otherwise. For equation (18), monoton-

icity is a property of the solution only if a 2> 0. If the coefficients a, b, and c have been
determined from actual data, this will usually not be the case; hence, monotonicity is not

a property of governing equations like equation (18).

These properties, nonnegativity, upper boundedness, and positive monotonicity, are but

a few of many qualitative properties of solutions that may be inferred by considering tile

governing equations. Note that the solutions of governing equations (9) and (18) are ex-

pressible in closed form, hence their qualitative properties need not have been investigated

via the governing equations. These examples were used since it is easy to verify the conclu-
sions.

As an example of a governing equation, without a solution expressible in closed form,
consider

bY
dY/dt = a Y e (20)

a >0, b<O.

I0
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Given a positive initial condition, t"(0), the solution is clearly tnonotonic increasing. The

upper bound occurs at ttmt value of t' for wt_ictt

bY
aYe = 0.

There exists no value of Y for which this equality is true, hencc tt_t.re is no uppc'r bound.

If Y(0) = 0, it cannot deviate from zero, hence F,0) ___ 0 insures tl_at the solution of

governing equation (20)is monotonic nondccrcasing. Further exa_ination would reveal
other properties.

A governing equation solution may be characterized as an element of one or more of tim

following sets ifig. 2). It is apparent that the solution of equation 9 is an vlement of

the set formed bv the intersection of sets 1, 2, and 3 (region A in iiRtlre 9. I_ikewise, the

solution of equation i20) is a member of sets 1 and 3 but not 2: i.e., :cgion B.

for all t>o j for t>o

 o oton• 3 Nondecreasing

Figure .2.--Relationship of properties 1, 2, and 3
for solution of governing equation.

What conclusions may be drawn from the previous discussion? One is that governing equa-

tions, the solutions of which are contained in region A, are suitable only for describing

forest system components such as standing crop in survivor trees. ]'hey are not. therefore,

suitable for describing total standing crop because this may involve an initial increase but

subsequent decline (MacKinney at al. 1937).

It may be said that figure 2 characterizes a function isolution) space, a space in which

the elements (points) are functions (solutions of ditt'erential cctuati_ms). Tl_is is in contrast

with the more familiar value space where the dements correspond to values of functions.

Also, in contrast with the value space, wt_ich is finite-dimensional, n,anv functkm spaces of

interest are infinite-dimensional (Rosen t967). It is obvious there are intinitelv many func-

tions in region A that are solutions of the ditt'erential equation

dY/dt = -aY c + bY. (21)
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One need only let the parameters a, b, and c vary over the positive real numbers.

The quasilinearization method used later allows choosing a starting point in function.

(solution) space, and c'onstructing a sequence of functions (solutions) that in many cases

converges to the function desired.

Consider briefly the qualitative properties of systems of equations. Again the purpose is

to examine the r.h.s, of the differential equations and on that basis infer properties of the
solution.

Of atlthe "irrefutable" biological laws, perhaps the one most commonly violated in

modeling forest systems is that of nonnegativity. This, of course, need not be the case as

shown by the following nonlinear multiplicative system:

a12 a14Y2 + a15Y3
dYl/dt = (allYl + al3Yl) e

a22 ea24Y3dY2/dt = (a21Y2 + a23Y2) (22)

a32
dY3/dt = (a31Y3 + a33Y3) •

It is immediately apparent, assuming the coefficients are based on actual field data, that

Y1, Y2, and Y3 cannot become negative. This is so because whenever Y1, Y2, or }"3 be-

comes zero, the corresponding derivative becomes zero, and furthermore cannot deviate

from zero again.

The same cannot be said for the following linear additive system:

dYl/dt = allYl + a12Y2 + a13Y3

dY2/dt = a21Yl + a22Y2 + a23Y3 (23)

dY3/dt = a32Y2 + a33Y3.

Clearly, even though Y1 may be zero, dY1/dt is still influenced by Y2 and Y3. In later

applications Y2 and Y3 have inhibiting influences on Y1, so the coefficients a_2 and

ata are negative, thus giving a negative derivative and eventually a negative standing

crop, Y1. Leary 2 compensated for this problem by eliminating from the system (23) any

component that became negative, a procedure suggested by Lotka (1928).

The property of boundedness for all t _-0 is a possible point of disagreement. In fact it
is a very restrictive condition to impose on a solution. Although the statement may be made

that everything worldly is finite, hence functions that describe standing crop should be
bounded above, a question arises as to how one treats something like standing crop in sur-

viving trees. By definition, su_'iving trees are living trees, and living trees do not remain

static in size. Hence, it appears that by definition, functions that describe standing crop of

surviving trees should be monotonic nondecreasing and unbounded above. An example of

a nonlinear muhiplicative model with possibly unbounded solutions is

a12(Y1 + Y2 + Y3)
dYl/dt = allYl e

a22(Y2 + Y3)
dY2/dt = a21Y2 e (24)

dY3/dt = a31Y3 ea32(Y3)

Notice the above system is nonnegative and may be unbounded above, although well be-
haved for all t. Due to its relative Simplicity, nonnegativity, and conformity to the require .....

ments for functions representing survivor standing crop, this is the system used in later sec-

tions to demonstrate the quasilinearization method of solving the inverse problem.

12
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EXAMINING SYSTEM DEVELOPMENT

Let us hrieflv discuss methods of examining system ch'xclotm_vnt: i.e., of solvin_ the gov-

erning equations. In what follows, the unknown model t)ar.,_'ters are assumed known.

The purpose of discussing these topics now is that many things common to methods of

solution are used in the methods of parameter estimation discussed later.

Solution methods may be categorized as analytic, graphic, and numeric. The concepts and

approaches contained in these methods are as follows:

(1) Analytic solutions: (a) the role of initial and boundary conditions in isolating a

unique solution to a single equation or system of equations, (b) the solution of linear

equations, and (c) the principle of superposition, which forms an integral part of the quasi-
linearization method.

(2) Graphic (geometric) solutions: the construction of direction fields is a useful ap-

proach for (a) exhibiting the approximate system development for a wide range of initial

conditions in an easily understood manner, (b) understanding the boundary condition for-

mulation of the inverse problem, and (c) exhibiting convergence of the quasilinearization

method to the correct system parameters.

(3) Numeric solutions: the algorithms used in obtaining numerical solutions are an effi-

cient means of examining the large systems of nonlinear equations encountered in modeling

forest systems.

Several of the above areas are the subjects of books in themselves. The purpose is,

therefore, to introduce the ideas involved through examples, give a brief discussion of ap-

plications, and refer the reader to authoritative sources for a more thorough discussion.

Analytic Solutions

It is perhaps well to distinguish between an analytic formulation of the problem and its

analytic solution. An analytic formulation is used in all cases regardless of the solution

method (analytic, graphic, or numeric). Conceivably, problems could be formulated ver-

bally, which might be a good beginning for someone with little experience in this area, but

they must be converted to analvtic form for solution. As a simple example consider: "The

growth rate of an organism is directly proportional to the amount of it that is present."

Expressing this in analytic form gives

dY(t)/dt = a Y(t), (25)

where a is a constant of proportionality.

An analytic solution, in the context of the above example, is a function Y(t_ which.

when differentiated with respect to time, results in equation (25). Such a function is eas-

ily obtained by direct integration of both sides of

dY(t)/aY(t) = dt; i.e.,

dY(t) = 5dt, oraY(t)

inY(t) = at + C4, where C4 = a(C 2 - CI) , or

at C4,Y(t) = e e or

at
Y(t) = C5 e , (26)

where C5 = eC4 and is the constant of integration.

13



The role of C,, in tile complete solution (26) may be seen from graptxs of Y(t) :::- C.; c :_L

for various values of C_ (fig. 3). Clearly, there is a family of solutions, tIow does one

Y

C5 =a b c

d e

f

o
Figure 3.--Family of solutions of equation 25.

specify a particular element of the family shown in figure 3 as the unique solution? This
is accomplished by specifying a constraint on the solution Y(t) at a value of t. The com-

mon case is where one specifies Y(t) = b when t = 0. This is an initial condition re-

quirement that Y (t) -- C_,eat must meet; i.e.,
a0

Y(0) = b = C5 e , or b = C5. (27)

Thus, the unique solution of

dY(t)/dt = a Y(t), with

Y(O) = b, is

Y(t) = b eat.

For a more involved ex_nple, consider the generalization of yon Bertalanffy's equation

(9), for which a solution for Z in terms oft is desired. Starting with equation (11) and

multiplying through by -b dt/(a- bZ) gives

-b dZ/(a - bZ) = -b(l-c)dt. (28)

Integrating both sides gives

ln(a - bZ) + C1 = -b(l-c)t + C2. (29)

Solving for Z, we have

C3 -b(l-c)tZ =--a---e
b b

C3 = eC2 - C1

14



Thus

1

Ib C3 e-b(l-c)t]l-cb (30)

If Yt -- Y0 at t--0,
1

E: l -c_ ; le 0 , or = - , and
Yt Yo

1

; aY = - (b-- Y0 ) e (311

The above examples were chosen so that they would be simple, yet exhibit what is meant
by analytic solutions and how they are obtained; i.e., using basic rules of integration, de-
rived in elementary, calculus. There are many special techniques for finding analytic solu-
tions of differential equations, for instance, use of integrating factors, method of undeter-
mined coefficients, method of variation of parameters, and others. They are mentioned here
because these are the techniques that are taught in the standard courses in differential
equations. But for our purposes they are of limited value.

The reader should clearly understand the role that initial conditions play in obtaining
unique solutions, because later two-point and multipoint boundary value problems are
discussed that presuppose an understanding of these ideas.

Solutions to homogeneous and nonhomogeneous linear differential equations are required

to implement the quasitinearization method of solving muhipoint boundary value problems.
Hence, it is appropriate to say something about the form of their solution.

Let L(D) be a linear differential operator (Rainville 1964, Kaplan 1964),

L(D) = an(t)D n + an_l(t)D n-I + ... + al(t) D + ao,

where D = d/dr, D k = dk/dt k,

and consider the differential equations

L(D)Y = R(t) (L) (32)
L(D)Y = 0 (eH).

LH is called the homogeneous or complementary equation associated with L.

It is possible to write down the entire set of solutions of L in the following way: (1) De-

termine any one solution of L, called a particular solution, Y = Yp(t). (2) Determine
the set of all solutions to LH. Let it be Y = Y(t,c,c2,c3,... ,cn) where the c i are arbitrary
constants. (3) Then Y = Yp (t) + Y(t,c_,c2, . . . ,cn) is the complete set of solutions to L.
The function Y(t,ca,c2, .... cn) , called the complementary function, or Yc, has a standard

form also. It is Ye = c_ym(t) + c2Yh ,(t) + . • • + Cn_hn(t), where yla(t) . . . yah!t)
are n linearly independent solutions of LH.

15



m

As an example consider:

Y" + Y = t 2 (L)

Y" + Y = 0 (LH) (33)

1. Y -- t2-2 is a solution of L

2. yhl -- cos t, Yh2 -- sin t are linearly independent solutions of LH, therefore

Y = t 2 - 2 + c 1 cos t + c 2 sin t (34)

is the complete solution of L. The arbitrary constants cl and c2 may be specified by initial

or boundary conditions.

Consider a system of linear first order equations similar to those of equation (16) :

dYl/dt = allYl + a12Y2 + a13Y3

dY2/dt = a21Yl + a22Y2 + a23Y3 (35)

dY3/dt = a31Yl + a32Y2 + a33Y3.

It is known that the solution of linear constant coefficient differential equations such as

(35) contain terms of the form e ft. Let them be as follows:

YI _ A ert

Y2 = B e rt

Y3 = C ert.

Using these as trial solutions of (35) gives, upon substitution,

rt err err rt
rA e = aliA + al2B + al3C e

rB ert = a21A ert + a22B ert + a23C ert (36)

rC e rt = a31A e rt + a32B ert + a33C e rt.

Dividing through each equation by ert and transposing gives

(all-r)A + al2B al3C = 0

a21A + (a22-r)B a23C = 0 (37)

a31A + a32B + (a33-r)C = O.

A homogeneous system of algebraic equations has nontrivial solutions if and only if the

determinant of the coefficientmatrix equals zero; i.e.,

all-r a12 a13

a21 a22-r a23 -- O. (38)

a31 a32 a33 -r
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- Expanding the determinant gives a polynomial in r. The three roots of this polynomial,

called the characteristic polynomial, are known as the characteristic numbers or eigenvat-
ues of the matrix

21 a22 a231 (39)
31 a32 a33] •

For simplicity in the following discussion, it is assumed that the ri, i= 1, 2, 3 are real
and distinct.

The eigenvalues of a matrix A are those scalar numbers r for which

Ax= rx, (40)

where x is a column vector,
A is a matrix, and
r is a scalar.

This may be put into a more familiar form as

(A - rI)x = 0, (41)

where I isthe identitymatrix and 0 isthe zero column vector.This isa homogeneous ma-

trix equation that has nontrivialsolutionsif and only if

det(A- rI) = 0.

Clearly, this is the same form as equation (38). Associated with each eigenvalue r is a

vector x for which equation (40) holds. This vector is called the associated eigenvector.

Returning to equation (35) a general solution may be written down directly. It is

Y2 = kllGl21 + k2 G2 e + k3jG32]e r3t (42)

Y3 LGI3J 2 LG33J

where rl, r2, and r3 are the eigenvalues of matrix (39), and

Gli, G2i, and G3i are the associated eigenvectors.

The constants ki, i = 1, 2, 3 are determined by initial conditions on Yl, Y2, and Y3.

The relevance of this discussion may be seen as follows. It is clear from equation (40)

that, for a specified value of r, say, r = 2.5, multiplying the vector x by the matrix A has

the same effect as multiplying x by the scalar 2.5. Multiplying a vector by a positive scalar

increases its length, but does not change its direction. Hence, eigenvalues serve as expanders

or contractors of the eigenvectors in equation (42). The eigenvectors Gli , G21, and G31
are linearly independent (a fundamental result from linear algebra for distinct eigenval-

ues), and span the 3-space. Hence, they form a basis of this space (Perlis 1952). This

means that any point in this space may be located by a linear combination of the basis

vectors, Gn, G_t, Gat. (The most familiar basis for 3-space is the orthogonal set

j 17



Consider again equation (42). At a particular time, say t,, the vectors G ij have a speci-
fied length and direction. Using basic rules for vector addition (i.e., the parallelogram
law), the sum of three vectors is again a vector that locates a point in space, in this case,

our state space. After an elapse of time, say of length _t, this point will have moved to a
different position in state space, the distance from that at time t being determined by

erl_t, er2At, and er3At.

Clearly, the eigenvalues rl, r2, and r3 determine how much the system state changes in a
specified time period At.

At this point the following question seems relevant: Does it not stand to reason that,

everything else held constant, forest stands on good sites should progress faster through
state space than stands on poor sites? If this is so, does it not follow that a model such as

(35) fit to historical data from stands on good sites would have larger eigenvalues asso-
ciated with its coefficient matrix than the same model fit to historical data from stands

on poor sites?

Computing the eigenvalues for models comprised of many equations can be bothersome,
because the equations will usually be integrated numerically. To secure the essential infor-

mation desired concerning the size of the eigenvalues and to circumvent the problem of
computing them, use is made of the following result from linear algebra (Faddeev and
Faddeeva 1963). The trace of a matrix is identical to the sum of its eigenvalues. In terms
of the above example,

trace (A) = all + a22 + a33 = r 1 + r 2 + r 3.

Thus, the trace of a coefficient matrix for a model such as (35) may well be a measure of
the productivity of the site on which the stand is growing.

Graphic or Geometric Solutions

Perhaps in the strictest sense of the word "solution," graphic methods are not sufficiently
precise. Nonetheless, they are useful in giving a picture of the solution's behavior over a
wide range of initial conditions. Before discussing the basic method, recall that the solution
of

dY(t)/dt = aY(t) (43)

is a locus of points in 2-space corresponding to different values of Y and t. This was seen
in figure 3.

The method of tangents or direction fields gives a representation of this locus of points by
the construction, at a suitable grid of points in Y - t space, of a short line segment with the
appropriate slope, dY/dtly.t. If the grid points are sufficiently close together, the locus of

points corresponding to the true solution would possess a set of lines tangent to it. The logic

18
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in using the method of tangents is that one constructs the "tangent" field, and from it in-

fers the locus of points that would be the solution for any given starting value (initial condi-

tion). Figure 4 shows a schematic direction field for equation (43). Obviously, tt>" slope
increases as Y increases, and'time is not a factor in its determination.

Y

! / / / / / / / /

/ / / / / / / /

/ / 7 J _ / / /

J j J J J J J J
J J J J J J J J

/ J J / / / /

/ / / I i I I I

Figure 4. -- Schematic direction field for equation
(43).

Clearly, the form of the solution curves in figure 3 could be inferred from the direction

field in figure 4.

Numeric Solutions

A numeric solution of a differential equation is a tabulated set of values with, in the case

of equation (43), the values of Y and t at which it occurred. The table could, conceivably,

consist of but two entries; i.e., Yo, to the beginning conditions, and Y_, tf, the final condi-
tions. Rapid access to intermediate solution values and associated times, as well as initial

and terminal conditions is a practical necessity for the methods of later sections, hence

they are stored internally in the central memory of the computer.

The problem of developing algorithms, of which there are many, for solving differential

equations numerically is indeed vast. The purpose at this point is to indicate that the single-

step method of Runge-Kutta has been found satisfactory in the numerical solutions required

in employing the quasilinearization method. Briefly, the Runge-Kutta (fourth order) method

uses information about the solution and the slope of the solution at a single point (value of

the independent variable) to project ahead a short distance, At, along the time taxis, in the

case of equation (43). The information concerning the solution and its slope at time t_

_ is contained in the following constants"
1

i mI = f(Y(tl), tI) Atm2 = f(Y(t I) + ml/2 , tI + At/2) At

m3 = f(Y(t I) + m2/2, tI + kt/2) At

m4 = f(Y(t I) + m3 , tI + At) At.
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They are combined as follows to project the value of Y at t2: Y(t2) -- y(tt)-b 1/6 (rot

+ 2m_ + 2m3 + m4).

The above equations may be generalized directly to handle systems of differential equa-

tions (Conte 1965, Henrici 1964, Ralston 1965).

A fourth-order Runge-Kutta (RK) procedure was used in the examples of later sections.

The routine, RKGS, from the Scientific Subroutine Package (IBM), contained a facility

for doubling or halving the step size according to an error criterion specified by the user.

This feature proved useful in detecting unstable systems, thus allowing the procedure to be

terminated before excessive computing time was consumed.

On the surface, one might expect a multipoint method, such as a predictor-corrector, to

be faster and cheaper, because it requires evaluation of the r.h.s, of the differential equa-

tion only twice per step, as opposed to four times for the RK method. However, predictor-

corrector methods are not self-starting and it is common practice to use a fourth-order RK

routine to compute the first four solution values, Yt, Yt 2 , Yt a , Y_ , which the predictor-
corrector then uses to project ahead to Yt 5 . As the routines are applied in later sections,
four applications of the RK procedure traverses the entire integration interval, with the re-

sult that the predictor-corrector scheme is never implemented. Hence, a simple, self-start-

ing, single-step, fourth-order RK method is used.

CHARACTERIZING THE SYSTEM STATE

Much time was spent examining how the system may be characterized in a manner that

does not violate certain biological principles and how a system may be projected through

time; i.e., by solving the governing equation. It was shown that at any point in time, tkl
the state of the system is given by the vector of state variables

T
[Yl(t k) Y2(t k) Y3(t k) ... 7n(t k)] •

This is a convenient means of expressing the system state; however, for our purposes it

lacks sufficient conciseness for ease in mathematical analysis. A measure of the above vec-
tor that satisfies our needs is a vector norm.

Perhaps the most familiar vector norm is the Euclidean norm defined as (Faddeev and

Faddeeva 1963),

1

= [(YI2 + Y22 + Y32 + ... + Yn2)]2, (44)
I[Y[13

or the distance of the point (Y1 Y2 Y3 . . . Yn) from the origin of our state space. There is

no obvious meaning to the Euclidean norm for our purposes, hence, attention is directed

at what is called the second vector norm, defined as t

I[YI[z"IYll+ IY2[+ Ix3[+ ...+ lYnl, (45)
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where IY11 is, in our case, the absolute value of the standing crop in component Y1. Notice

that if our governing equations possess the property of nonnegativity, equation (45) may
be simplified to

IIYII2' --YI + Y2 + Y3 + ... + Yn

which is, of course, total standing crop (assuming the units of Yi are conformable for addi-

tion).Z Likewise, given two adjacent points in state space corresponding to times t_ and t2,

llY(t2) l12'- llY(tl)II2'

gives growth in total standing crop.

A geometric picture of system (stand) development through time may be obtained if the
sequence of state vectors

Y2(tl) I Y2(t2) I !Y2(t_)

YB(tl)I. ' Y3(t2)I. ..... !Y3(tn)..

Yn(tl)J Jnit2)J iYnitn)

isinterpretedin a geometricmanner.

One such manner isto presentthesevectorsasbar charts(Knuchel 1953). Or one might

convert the bar chartsto a seriesof polygons by connecting the midpoints foreach class.

Superimposing severalof these polygons on the same coordinatesystem shows that in the

case of even-aged foreststandsdevelopment ischaracterizedby the propagationofa "wave"

across the size (d.b.h.) classes (fig. 5). 2

¥

t4

t3
t2

DBH
0

Figure 5. _ Forest stand development in terms of
wave propagation.

The interpretation employed in the remainder of this paper is that of the sequence of state
vectors, each element of which locates a point in state space, tracing out a trajectory in
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state space. A simple example for three-dimensional space is shown in figure 6. Clearly, given
an initial condition (point in state space_, the question of solving the governingequationis)
is equivalent to determining the trajectory tile system will follow through time.

Y3__, t7

tt__y 1

Figure 6. _ Hypothetical forest stand development in
terms of point transformations.

THE INVERSE PROBLEM

The problem central to constructing dynamic mathematical models of forest systems is

the inverse of that just stated, that is, instead of asking "given certain governing equations
for our system, what trajectory will the system follow?", one asks, "given observations on
the system trajectory, what are the governing equations?" In its most basic form, the inverse
problem may involve unknown forms of the governing equations. However, at this point the
assumption is that the form of the governing equations is known, but numerical values of the

parameters are not. Thus, our inverse problem may be rephrased as follows: "Given ob-
servations on the system trajectory, what are the numerical values for governing equation
parameters that put the predicted system states in the desired conformity with the ob-
served system states?"

What is the real world relevance of the inverse problem? Basically it rests on man's desire
to exert control over his environment because of his preference for certain system states.
In this case states take the form of stand structure, species composition, etc. As manipula-
tors of forest systems, land managers may ask if leaving the system undisturbed will result

in desired future states. Future states can be predicted by projecting the system into the fu-
ture using past system states as a guide in determining governing equation parameters. If pro-
jected future states are not those most desired, a decision must be made as to how, given
the resources available, a manager can alter the present state to insure the desired future
states. This line of discussion leads naturally to the questions of multistage decision processes

and optimal control, which are interesting but not part of our theme.

22
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Boundary value problems are discussed in the next section, and we see that by using ob-

servations on the system trajcctor?" as boundary conditions, the inverse problem may be

solved. That is, the equations governing our system may be completely specified.

BOUNDARY CONDITION FORMULATION

OF INVERSE PROBLEM

By specifying an initial condition for our governing equation, a particular element from

a family of solutions may be isolated. See figure 7 for a schematic example using the gen-

eralized von Bertalanffy equation. For a further example, consider the following growth

function similar to one suggested by Roston (1962):

dY/dt = clY - c 2 Y dr. (/46)

The growth of Y is positively related to the amount of Y present, but is inhibited bv an

accumulated proportion of Y. The inhibiting component may reflect an encroachment on

available growing space (ecosystem resources) or an accumulation of toxic compounds

that may be by-products of metabolism or environmental pollutants.

Y

I

t J
i J J J / J J J

7/'
/

/ /,, / / / /
/

I

/ / // / / / / /
/

/

/ / ,' / / / / / / //

./

,1

O _to _'t
Figure 7.--Schematic direction time field for yon

Bertalanffy's equation showing role of initial con-
dition.

Differentiation of equation (46) using Leibnitz's rule gives the linear homogeneous sec-
ond-order differential equation

d2y/dt 2 - cldY/dt + c2Y = 0. (47)
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Recall from the section on "Examining System Development" that such an equation has

a solution comprised of a linear combination of homogeneous solutions of the form

Y = glerlt + B2er2t, (48)

where rl and r2 are roots of the characteristic equation

2
z - ClZ + c2 = O.

In this case B_ and B2 are determined from initial conditions that involve Y and dY/dt; e.g.,

Y(0) = a

dY/dt 1 = b.
t=O

This is an initial value problem, because the constraints on Y and dY/dt are at time zero.

Consider now the following changes in constraints on the solution of equation (47). In-

stead of specifying both conditions at t = 0, one is specified at time t = 0 and, the other at

t -_ tf. Furthermore, Y must meet both of these constraints instead of dY/dt meeting one

as above. Thus, the problem is to solve

d2y/dt 2 - CldY/dt + c2Y = 0, (49)

with boundary conditions Y(O) = a

Y(tf) = b. (50)

Equations (49) and (50)constitute a linear two-point boundary value problem for which

there are straightforward methods of solution.

However, many of the two-point boundary value problems that arise in the physical sci-

ences, the calculus of variations, and control theory are nonlinear, and have no straightfor-

ward methods of solution. Some of these may, however, be solved by the quasilinearization
method.

The solution of (47) may be placed in the framework of a system of differential equa-

tions by making the substitution, Z = dY/dt, and in place of equation (49) constructing

the system of two first-order equations

dZ/dt = ClZ - c2Y (51)
dY/dt = Z

with the boundary conditions

Y (0) = a (52)
Y(tf) = b.

Clearly, Y has two constraints and Z none. Successful numerical solution of (51) subject

to (52) hinges on the ability to select a value for Z at t=0 such that when t=0, Y

=a, and when t =tt, Y=b.

If constraints on the solution exist at more than two points, it is referred to as a multi-

point boundary value problem. As an example, consider the nonlinear first-order equation

bY
dY/dt = aYe (53)

with boundary conditions

Y(tl) --ml, Y(t2) = m2, Y(t3) = m3. (54)
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In our applications, the constant parameters a and b in equation (53) are considered as

unknowns and the following changes in the form of equation (53) are made:

(1) Consider a and b to be time-dependent variables; i.e., functions of time of the form

da/dt = 0
db/dt ; 0, and

(2) convert the single equation to a system of equations. Thus, a simple parameter

estimation problem that will be solved in the following section is the multipoint boundary

value problem

dY/dt = aYe bY
da/dt = 0 (55)
db/dt = 0

with boundary conditions

Y(t i) = mi, i = I, 2, 3. (56)

Here again, successful numerical solution rests on selecting values for a(0) and b(0) such

that conditions (56) are met, where m iare observed system states.

Likewise for systems of equations:

dYl/dt = a YI eb(Yi + Y2 + Y3)

dY2/dt = c Y2 ed(Yl + Y3)

dY3/dt = f Y3 eg(Y3)

da/dt = 0

db/dt = 0 (57)

dc/dt = 0

dd/dt = 0

dr/dr = 0

dg/dt = 0

with boundary conditions

Yl(t i) = mli, i = i, 2, 3

Y2('ti) = m2i, i = i, 2, 3 (58)

Y3(ti) = m3i, i = i, 2, 3.

Our approach will again be to select values for a, b, c, d, [, and g at t = 0, such that con-

ditions (58) are met.

It is highly unlikely that values for a, b, c, d, /, and g at t = 0 could be selected such

that Y1 (til= rnl.il, Y2(ti) = rn2.i, Y3(ti) = ma,i for all i. Hence, it is important that
there is a means of making an initial estimate for a, b, c, d, [, and g, and, furthermore, a

means of improving these estimates until a criterion of goodness of fit between Y1 (ti) ,

Y2(ti_ , and Y3(ti), and mloi, rn_.,i, rn3.1, respectively, is met.

The quasilinearization method considered in the next section provides us with such a pro-

cedure. First, however, it is advisable to review some basic concepts concerning iteration
functions.
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Use of an iteration function (I.F.) involves making an initial guess at the answer, sub-

stituting it into an I.F., and getting a new approximation to the answer. 'l'he new ap-

proximation is then substituted into the I.F. and another approximation is obtained. This pro-

cess is repeated until the value substituted into the I.F. is the same (to however many digits

accuracy one desires) as the value given by the I.F. as the new approximation.

An I.F. is any function of the form x (k+_) -- F(x(k),x(k--1),x(k--2), . . .), where the

superscript indicates tile independent variable at the iteration. One seeks a "fixed point"
of the I.F., which is that value of x, say o_, such that ae= F(c_). Thus, when x = ,_, the it-

eration has converged.

There are many types of I.F.'s, the primary differences among them being (a) their in-

terval and rate of convergence, (b) the number of previous iterations that are used, and

(c) the number of initial approximations that must be specified to "start" the process.

One might say that an ideal method would be one that is globally convergent, of at least

second order (i.e., converges quadratically), and needs only one initial approximation to get
started.

In what follows, the Newton-Raphson method is discussed in relation to (b) and (c)

above. Using Traub's (1964) classification of I.F.'s, the Newton-Raphson method is a one-

point function requiring evaluation of the derivative. "One-point" means the I.F. is of the

form x (k+_) -- F(x(k)), that is, only the previous iterate is used in obtaining a new approxi-

mation. It is well to note that most I.F.'s use information about the shape of the curve

of the underlying function to speed convergence.

The form of the Newton-Raphson I.F. may be developed in the following way. Consider

the function [ shown in figure 8. The value of x at which f(x) = 0-is sought. A first ap-

proximation is obtained by selecting a value for x, x (1), and evaluating [; i.e., [(x(1)). Using

the point-slope formula we have

y- f(x (I)) = f'(x(1))(x- x(1)). (59)

Setting Y = 0 and solving for x gives

(I) (x(t) (x(1)x = x _ f )/f, ). (60)

If x is closer to _ than x (_) --i.e., Ix- aeI<Ix (_) -o_[- we take x as our new estimate of the

root and repeat the process. In general this gives

(n) (n-l) (n-l) (n-l)
x = x - f(x )/f'(x ), (61)

which is the Newton-Raphson iteration function, and is abbreviated

(k) (k-l)
x = F(x ) ,

where F corresponds to the right-hand side of equation (61).
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In the next section it will be seen that the quasilinearization method is abstractly equiv-
alent to the Newton-Raphson method. A fundamental difference, however, is that in the

discussion above, the concern is with approximations (to the root _) in value space, where-
as with the quasilinearization method the concern is with Newton-Raphson type approxi-
mations in [unction space. The concern, then, is with convergence to a function rather than
to the value (root) of a function.

Y
& Figure 8.- Newton-Raphson approximation to the

root [ (a_) = 0.

¥ = f (x)

f (x _'_

i

!
> X0 X _'_ X o_'_

SOLUTION OF THE INVERSEPROBLEM

USING QUASILINEARIZATION

The approach in solving the following inverse problems is one of (a) converting non-
linear differential equations into approximately equivalent linear equations, and (b5 solv-
ing the resulting linear boundary value problem using the method of complementary func-
tions and standard numerical integration techniques. Why use this approach? It is because

there are straightforward methods for solving linear boundary value problems with con-
stant or variable coefficients. To see this, consider the following example of a linear non-
homogeneous second-order equation with variable coefficients.

d2y/dt 2 + P(t) dY/dt + Q(t) Y = R(t) (62)

with boundary conditions

Y(0) = a (63)
Y(tf) = b.

Linear equation theory dictates that the complete solution of (62) be of the form

Y(t) --yp + ClYhl + C2Yh2, (64)

where yp,isthe solutionof the nonhomogeneousequation,and yh_and _>'_a_areindependent
solutions'ofthe homogeneousequation.How, then,do we form theparticularand homog-

27



eneous solutions? First, one may obtain a particular solution by numerically integrating

equation (62) subject to the initial conditions

Y(0) = a

dg/dt I = 0.
t=0

Notice that the initial condition on Y corresponds to the first boundary condition in (63).

Second one may obtain a homogeneous solution of equation (62) by numerically integrating

d2y/dt 2 + P(t) dY/dt + Q(t) Y = 0 (65)

subjectto any convenientinitialconditions.As an example, one may use

Y(0) = I

dY/dt 1 = 0. (66a)
tffi0

Two linearly independent homogeneous solutions of (62)may be required, so

Y(0) = 0

dY/dt I = 1
tffi0 (66b)

are used as initial conditions for the second.

The above are initial value problems. Because the first boundary, condition has been

satisfied by yp(t), our concern now is that the second boundary condition y(t_) -- b is met.

This is accomplished by forming the general solution at t -- 0 and t = of, via superposition,

which gives two linear algebraic equations in two unknowns, cl and c_; i.e.,

Y(0) = yp(0) + cI Yhl(0) + c2 Yh2(0) = a (67)

Y(tf) = yp(tf) + cI Yhl(tf) + c2 Yh2(tf) = b.

What values should cl and c2 take to insure that the boundary conditions (63) are met? By

substituting the initial conditions into the first equation of (67)

a+ cI i + c2 0 = a.

Clearly, cl must be zero. If cl -- 0, then c2 must equal

(b - yp(tf))/Yh2(tf)

ifthe second boundary conditionisto be satisfied.

Thus, this lineartwo-point boundary value problem issolvedby computing one par-

ticularsolutionand two linearlyindependent homogeneous solutions.Then, a system of

linearalgebraicequationsissolvedfor the integrationconstantsso that the boundary con-

ditionsare satisfied. If we desire the complete solution, as we will later, we may use these

integration constants in superposition.

If equation (62) is converted to a system of two first-order equations by making the
substitution

dYldt- Z, (68)
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the nonhomogeneous equation is

dY/dt = Z (69)
dZ/dt = -P(t) Z - Q(t) Y + R(t)

and the homogeneous equation is

dY/dt = Z

dZ/dt = -P(t) Z - Q(t) Y. (70)

The initial conditions for the solution of equation (69) (the particular solution) are

Y(0) = a

Z(O) = O, (71)

and for the solution of equation (70) (the homogeneous solutions) are

Y(0) = i Y(0) = 0

and (72)
Z(0) = 0 Z(0) = 1.

Because the boundary conditionsinvolvelz and not Z, the integrationconstantsc_ and c=

are again determined using equation (67). This approach is used in the following sections.

Thus, it is possible to solve linear boundary value problems, equations (62, 63), by using

numerical integration techniques and methods of solving systems of linear algebraic equa-
tions. To see how it is possible to convert a nonlinear boundary value problem into a line-

arized form, consider the nonlinear second-order equation

d2y/dt 2 --f(Y(t),t) (73)

with boundary conditions

Y(0) = a

Y(tf) = b.

Quasilinearization connotes replacing the nonlinear differential system by a "nearby" lin-

ear system. The nearby linear system is derived, in the case of equation (73), by expand-

ing f(Y,t) in a Taylor's series in Y about Y0:

fYY (Y0,t) 2
f(Y,t)., f(Y0,t) + fy(Y0,t)(Y-Y0) + 2! (Y-Y0) + ....

Retainingonly the linearportion,the differentialequation (73) takesthe form

d2y/dt2 x f(Y0,t) + fy(y0,t) y _ fy(yo,t) Y0' (74)

where, ifY0 ispresumed a known functionof t,the equation _slinearin Y.

Starting with some initial guess function Y0(t), a _quence of functions is generated by
means of the equation

d2gn+I/dt 2 = fy(Yn(t),t)Yn+ 1 + f(Yn(_),t) -

fY(Yn(t),t)Yn(t) (75)

or d2Yn+i/dt 2 = a(t)Yn+1 + b(t),

where a(t) and b(t) are known (previously computed and stored inten_ally in the com-

puter) functions of t.

Clearly, this recurrence relation is analogous to a one-point I.F. requiring evaluation of

the derivative; i.e., the Newton-Raphson I.F.

29



How does one know when convergence of the above recurrence relation has occurred?

Roughly speaking it is when the function Yn (t), the solution at tile ?/th iteration, deviates

less than some prescribed amount from tile function Yn+l(t), the current solution.

Most of this work involves systems of first-order equations, hence, the analogous rectlr-

rence relation for such systems is
-i,.

dYn+l - f(Yn(t), t) + J(Yn (t),t) (Yn+l - Yn (t))' (76)dt

where > indicates column vectors and f is the vector function of r.h.s, of the governing

equations, and ] is the Jacobian matrix defined as

DfI DEI DfI DfI,.,

DYl,n DY2,n _Y3,n DYm,n

J(Yn) = • • (77)

Df Sf Sf Df
m m m .mo, •

SYl,n SY2,n SY3,n _Ym,n .

Again, Yn(t) isa computationallyknown vectorfunction on the interval0 _ t ___tf.Be-

cause equation (76) isa linearnonhomogeneous first-orderequation,superpositionmay be

used to form the complete solution as

Y(t) = yp(t) + ClYhl(t) + c2Yh2(t) + c3Yh3 (t) + ... + CmYhm(t)"

The details of the above procedure are perhaps best seen through an example. Assume

the existence of three observations on a system trajectory,

Y(0) = mI

Y(tl ) = m2 (78)

Y(tf) --m3, and

the hypothesizedgoverning equation

dY/dt = aYebY. (79)

To completely determine the equation governing the system, numerical values for a and b
must be determined such that conditions (78) are met. Converting a and b to functions

of time and constructing a system of equations gives

dY/dt = aye bY = fl

da/dt = 0 = f2 (80)

db/dt = 0 = f3"

In terms of equation (76), we have

dYn+I ' anYn(t)ebnYn(t) Dfl _fl Dfldt = DYn Dan Dbn Yn+l-Yn

Df2 Df2 Df2

dan+l=dt 0 + DYn Dan Dbn an+l-an (81)

Df3 Df3 _f3

dbn+l = 0 _Yn Dan Dbn bn+l-bndt
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Equation (81) reduces to

_fl _fl
dYn+l anYnebnYn + +

dt = _ (Yn+I-Yn) _ (an+l-an) +

_fl

_bn (bn+l-b n) (82)

dan+ 1
=0

dt

dbn+l - 0
dt

with boundary conditions Y(O) = m_, Y(t_) --m_, and Y(t_) = ma. This, then, is a

multipoint boundary value problem formulation of our inverse problem. Notice that equa-

tion (82) is a linear nonhomogeneous differentialequation, and as such has a solution of

the form

Y(t) = yp(t)_hl(t)] FYh2(t!l FYh3(t]lt)

a(t) = ap(t) + clIahl(t)l + c21ah2(t + c31ah3( <83)

b(t) -- bp(t) _hl(t)J Lbh2(t _hB(t ,

where [ypap.bp_] T is the solution of the nonhomogeneous equation (82) and

ih1(t)7 rYh2 (t)7 phm(t) 7

hl(t_ , [ah2(t) I , and lah3(t_

hl(t)J _hm(t)J [bhB(t)J

are independent solutions of the homogeneous form of (82); i.e.,

_fl _fl _fl

dYn+i/dt = _Yn Yn+l +-_a n an+l + _ bn+l (84)

dan+i/dt = 0

dbn+i/dt = O.

The logic in selecting initial conditions for particular and homogeneous solutions is entirely

analogous to that used in equations (66a) and (66b). For the particular solution the first

boundary condition is used as the initial condition on Y and a(0) = b(0) = 0; i.e.,

[i l
To obtain three independent homogeneous solutions the convenient initial conditions

, , and

may be used. These, again, are initial value problems that may be handled in a direct man-

ner using numerical integration techniques.

To insure that the second and third boundary conditions are met, we form the general

solution, equation (83). Because the boundary conditions involve Y, not a or b, we con-

sider the solution for Y at the three times 0, h and t_; i.e.,

Y(0) = yp(0) + ClYhl(0) + c2Yh2(0) + C3Yh3 (0) = m 1

Y(tl) = yp(t I) + ClYhl(t I) + c2Yh2(tl) + c3Yh3(t I) = m2

Y(tf) -- yp(tf) + ClYhl(t f) + C2Yh2(tf) + C3Yh3(tf) = m3.
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Tt:is is similar to equation (67). Proceeding in an analogous manner here we have for

the first equation

m1 + c 1 0 + c 2 0 + c 3 1 = ml,

which dictates that Ca be zero. The result is two equations in two unknowns,

yp(t 1) + ClYhl(t 1) + c2Yh2(t l) = m2 and
(85)

yp(tf) + ClYhl(t f) + c2Yh2(t f) : m3,

which may easily be solved for cl and c._,.Only two homogeneous solutions are required;

i.e., so initial conditions [0 1 0] T and [0 0 1]T are used.

Once ct, c._,, and ca are known, they are substituted ;nto equation (83) and the solution
vector function

n+l (t)

n+l ( t )

is formed. After a check for convergence, by making a comparison of

[,bn+1(0)] _an(0)]n+z(°)] vs kbn(O)]'

one may, if need be, return to equations (81) and (82) and consider the vector function

just determined as

n(t)

n(t) •

In cases wher_ many observations are available on a system trajectory, such as

Y(ti) = mi, i = i, 2, 3..... n,

we have an overdetermined system corresponding to equation (85). In such cases each boun-

dary condition may not be met, so some measure of goodness of fit is used between

Y(t i) and mi; i.e., (86)
Y(ti) _ mi for all i.

The criterion used in later sections is that of least squares. Thus, integration constants c_

and c2 are determined such that they minimize

2
S : g (Y(ti) - mi) . (87)i

Ti_ere is some indication that other measures of goodness of fit may be more appropriate

than least squares, for instance, minimax (Belhnan 1964).

The following flow-chart conveys a more concise picture of the steps involved:
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OPERATION

STEP

1 Use known initial condition for t', best estimate of unknown initial conditions a(0) {
and b (0), and numerically integrate equation (80). 1

4,
2 I Using tabulated solution from step 1, form one particular and two homogeneous I

solutions of equation (82). I
3 I Determine constants of integration using appropriate solution methods. ]

4 ] Form complete solution using superposition, equation (83). ]

5 [ Compare initial conditions an+l(0), b,,+l(0) at (n iteration with those at

..[Set an(O ) = a n –�(0)

-NO "7 bn(0) =l bn+l (0)
YES GO TO STEP 2

l
STOP

Example I

For a first example consider the following observational data on one system component
in a northern hardwood stand located on the Argonne Experimental Forest in Wisconsin.

The component is" defined as all sugar maple (Accr saccharum) trees that were living in
1968 and were present in the 4- to 8-inch diameter class in 1947. Summarizing the his-

torical records for this component on a plot gives

Sum o[ tree diameters

Year (Inches)
1947 60.6

1949 63.9

1950 65.4

1951 66.9

1954 72.6

1958 78.6

1962 85.9

1967 92.5

1968 93.4
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These form the boundary conditions that guide the solution of equation (80). Because only

two homogeneous solutions are required, the system is overdetermined. To guide our solu-

tion, the least squares criterion for goodness of fit is used. In other words, we want to de-

termine cl and c2 in (85) in a manner that minimizes
2

S = I (Y(ti) -mi) , wherei
2

S = I (yp(ti) + ClYhl(t i) + c2Yh2(t i) - mi) . (88)
i

This may be accomplished by solving the simultaneous equations

_S 3S
--= 0 and --= 0
_cI 3c2

for cl and c2.

Using a computer program written by the author, this nonlinear multipoint boundary

value problem is solved by following the steps outlined in the flow-chart.

The initial parameter estimates were

a(O) = .05
b(O) = -.01.

The estimates of parameter values at each iteration were
Iteration a b

1 0.075469 - 0.017809

2 .090660 - .019302

3 .091015 -- .019167

4 .091041 - .019.172

5 .091040 -- .019172

The equation governing this system component is, therefore,

-.019172 Y (89)dY/dt = .0910 Y e

Integrating this equation with known initial conditions on Y, Y(0) -- 60.6, gives the follow-

ing values:

Year Observed Predicted Difference
1947 60.6 60.6 __

1949 63.9 64.0 - 0.1

1950 65.4 65.7 - .3

1951 66.9 67.4 - .5

1954 72.6 72.4 .2

1958 78.6 78.8 - .2

1962 85.9 85.1 .8

1967 92.5 92.4 .1

1968 93.4 93.8 - .4

A similar trial using the same source and type of data, but for the 8- to 12-inch diameter

class of sugar maple, gave the following results
Iteration a b

Initial estimate 0.050000 - 0.010000

1 .075405 -- .020263

2 .134159 - .030693

3 .161696 -- .030475

4 .161992 - .030541

5 .161949 - .030537

6 .161951 - .030537
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Thus, the equation governing this system component is

-.O3O537 Y
dY/dt = .1619 Y e (90)

Integrating this equation with known initial conditions, F(0)= 63.2, gives

Year Observed Predicted Difference

1947 63.2 63.2

1949 66.1 66.1 0.0

1950 67.0 67.5 - .5

1951 68.2 68.8 - .6

1954 72.8 72.8 .0

1958 77.9 77.7 .2

1962 83.0 82.2 .8

1967 87.4 87.3 .1

1968 87.8 88.3 - .5

Thus, it is possible to use observed system states as boundary conditions, and by solv-

ing the associated multipoint boundary value problem, to determine equation parameters
that produce close agreement between predicted and obser_-ed states. Because the system
components are well behaved, it follows logically that a projection for a limited time be-
yond 1968 may result in acceptable estimates of future component values.

The above examples, although showing close agreement between predicted and observed
states, are inadequate in that they do not treat the forest as an interactive system. Hence,
consideration is given to a more inclusive model that reflects simplified assumptions con-
cerning interactions among three system components.

Example 2

The concern here is with finding numerical values for the parameters that best relate

the predicted system state, as determined by

b(Yl + Y2 + Y3)
dYl/dt = a YI e

dY2/dt = c Y2 ed(Y2 + Y3) (91)

dY3/dt = f Y3 eg(Y3),

to the observed state given below. In this case, six homogeneous solutions are required, one
for each unknown initial condition (parameter) (see equation (57)). Given nine observa-
tions in time, an overdetermined system is again present, so the least squares criterion for
goodness of fit is used. In other words, we minimize

S = _((Yl(ti)-ml,i)2 + (Y2(ti)-m 2 i)2 + (Y3(ti)-m3,i)2) (92)i

where m_,i is the i_ observation on the first state variable, and

Yl(t) = Ypl + clYhl + e2Yh2 + c3Yh3 + C4Yh4 + c5Yh5 + c6Yh6"

The normal equations are derived in a straightforward manner by taking the partials of

(92) with respect to cx, % ca, c,, c_, and c_, and equating them to zero.

Using the data in table 1 as our boundary conditions gives the following results:
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Parameter

Iteration a b c d [ g

Initial estimate 0.09100 - 0.00100 0.16190 - 0.01000 0.18370 - 0.08650

1 .03219 - .00056 .11380 - .01335 .11488 - .07443

2 .06551 - .00765 .14142 - .01948 .15608 -- .08283

5 .12152 - .00958 .18381 - .02285 .15132 - .08029

7 .12145 - .00957 .18385 - .02285 .15132 - .08029

Table 1. -- Observed stand states/or all sugar maple
on a plot on the Argonne Experimental Forest

: D.b.h. class (inches)
Year :

: 4 to 8 : 8 to 12 : 12 to 16
: : :

(Sum of diameters in inches)

1947 60.6 63.2 27.1
1949 63.9 66.1 28.2
1950 65.4 67.0 28.4
1951 66.9 68.2 28.9
1954 72.6 72.8 30.2
1958 78.6 77.9 31.6
1962 85.9 83.0 33.3
1967 92.5 87.4 34.8

1968 93.4 87.8 35.1

Hence, the complete governing equations are

-.00957(Y1 + Y2 + Y3)
dYl/dt = .12145 Yl e

-.02285(Y2 + Y3)
dY2/dt = .18385 Y2 e (93)

-.08029 (Y3)
dY3/dt = .15132 Y3 e

Using theseequationsand the known initialconditions

YI(O) = 60.6
Y2(O) = 63.2
Y3(O) = 27.1,

the deviations of predicted system states from observed states are shown in table 2. Again,

observed and predicted states agree well.

Interestingly, parameters a and c as determined from the system of equations (0.12145

and 0.18385, respectively) are both greater than when single equations are used as govern-
ing equations for their respective components (0.09104 and 0.1619). This indicates that com-

ponents Y1 and Y2 have more capacity to grow than is indicated by treating them as iso-

lated components, or not in the context of an interactive system. Clearly, component Y1

has observed states as shown earlier because it is comprised of the smallest measured trees

in the stand, not because all 4- to 8-inch sugar maples grow as indicated by the boundary

conditions. Equation (89)

-.01917 YI
dYl/dt = .09104 YI e
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the single component equation, tells nothing about the relationship of trees in this class to

trees in the larger size classes. On the other hand, the first equation of the system,

-.00957(Y1 + Y2 + Y3)
dY1/dt = .12145 Y1 e (94)

tells us that components Y2 and Y3 are inhibiting ttle growth of Y1. Furthermore, if all of

Y3 were removed, one would expect a response in tile growth of component 2"1. The above

equation will give a response because tile inhibiting component will be smaller. Importantly,
the amount of response is taken care of by the system itself.

Table 2.--Deviations o/ predicted [rom observed

sums o/ diameters on a plot on the Ar-
gonne Experimental Forest

: D.b.h. class (inches)
Y_ar :

: 4 to 8 .:8 to 12 : 12 to 16

(Deviation in inches)

1947 .... __

1949 0.i 0.0 -0.i
1950 .3 .5 .0
1951 .5 .7 .0
1954 - .i .0 .0
1958 .3 - .i .I

1962 - .8 - .7 - .I
1967 - .i .0 .0
1968 .4 .4 .0

Ahhough equation (93) is a realistic characterization of how forest system components

interact, like all models, it involves simplifying assumptions. One could, at the expense of

more computing time and a slight increase in data requirements, have a separate coeffi-
cient for each inhibiting component in each equation. Likewise, remeasurement data on

other components of the forest system such as browse could easily be included as separate

equations in such a multidimensional model. The upper limit of equations and unknown

parameters appears determined only by available historical data and computing costs. (De-

termination of the six parameters in equation (93) required 7 seconds central processor
time on a CDC 6600 computer.)

IMPLICATIONS

The preceding examples show how it is possible to obtain governing equation parameter

estimates on the basis of observed system states. The approach used represents a construct-

ive alternative to regression techniques for models expressed as differential equations. The

attractiveness of the boundary value problem approach is clear in example 2, where par-

ameters are determined in three nonlinear equations simultaneously.

The models and boundary conditions discussed here are of the simplest type. However,

the same approach used in this paper is applicable to models involving time lags, time-

dependent coefficients, partial differential equations and to boundary conditions involving
linear and nonlinear relationships between the state variables.
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In conclusion, this approach allows the scientist to more completely quantify his knowl-
edge of forest development processes, to express his theories in terms of one or more gov-
erning differential equations, and to determine unknown numerical constants in the govern-

ing equations--three important steps in the study of forest dynamics.

LITERATURECITED

Bellman, R. E. 1962. Orbit determination as a multi-point boundary value problem and
quasilinearization. Nat. Acad. Sci. U.SA. Proc. 48: 1327-1329.

Bellman, R. E. 1964. Quasilinearization, boundary-value problems and linear programming.
Rand Corp. Memo. 4284-PR, 7 p.

Bellman, R. E., and Kalaba, R. E. 1965. Quasilinearization and nonlinear boundary-value
problems 206 p. New York: Elsevier.

Conte, S. D. 1965. Elementary numerical analysis. 278 p. New York: McGraw-Hill.

DeRusso, P. M., Ray, R. J., and Close, C. M. 1965. State variables for engineers. 608 p.
New York: John Wile); and Sons, Inc.

Faddeev, D. K., and Faddeeva, V. N. 1963. Computational methods of linear algebra. 621
p. San Francisco: W. H Freeman.

Hall, A. D., and Fagen, R. E. 1956. Definition of a system--in general systems. Yearbook

Soc. for Advance. Gen. Syst. Theory 1:18-28.

Henrici, P. 1964. Elements of numerical analysis. 328 p. New York: John Wiley and Sons,
Inc.

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor on Quantitative Biol.
Syrup. 22: 415-427.

Kaplan, W. 1964. Elements of differential equations. 270 p. New York: Addison-Wesley
Publishing Co., Inc.

Knuchel, H. 1953. Planning and control in the managed forest. (Translated by Mark L.
Anderson.) 360 p. London: Oliver and Boyd.

Lee, E. S. 1968. Quasilinearization and invariant imbedding. 329 p. New York: Academic
Press.

Lotka, A. J. 1928. Elements of mathematical biology. 465 p. New York: Dover Publica-
tions, Inc.

MacKinney, A. L., Schumacher, F. X., and Chaiken, L. E. 1937. Construction of yield tables

for nonnormal loblolly pine stands. J. Agr. Res. 54(7) : 531-545.

Miller, R. S. 1967. Pattern and process in competition. Advances in Ecol. Res. 4: 1-74.

Moser, J. W., and Hall, O. F. 1969. Deriving growth and yield functions for uneven-aged
forest stands. Forest Sci. 15(2): 183-188.

Perlis, S. 1952. Theory of matrices. 237 p. New York: Addison-Wesley Publishing Co., Inc.

Rainville, E. D. 1964. Elementary differential equations. Ed. 3, 521 p. New York: Mac-
Millan.

Ralston, A. 1965. A first course in numerical analysis. 576 p. New York: McGraw-Hill.

Rosen, R. 1967. Optimality principles in biology. 198 p. New York: Plenum Press.

Roston, S. 1962. On biological growth. Bull. Math. Biophysics 24: 369-373.

Traub, J. F. 1964. Iterative methods for the solution of equations. 310 p. Englewood
Cliffs: Prentice-Hall Inc.

38

..,._.,__,,,......................................_,........................................................................................................................................................................................................................................................................................................................................................................................................ _,,_,_4,_

:::::: : ...... :T:T ....................... illll £11L iLiiii£Li.12.22 ..... 17



SOME RECENT RESEARCH PAPERS

OF THE

NORTH CENTRAL FOREST EXPERIMENT STATION

Durable Rustic Wooden Signboards, by Glenn A. Cooper. USDA Forest
Serv. Res. Pap. NC-29, 15 p., illus. 1969.

The Market for Wood Picnic Structures, by Jerry" A. Sesco. USDA
Forest Serv. Res. Pap. NC-30, 7 p., illus. 1969.

Oak Forests of the Lake States and Their Management, by John L.
Arend and Harold F. Schotz. USDA Forest Sen'. Res. Pap. NC-3I, 36
p., illus. 1969.

Wildlife Esthetics and Auto Campers in the Superior National Forest,
by David W. Lime and Charles T. Cushwa. USDA Forest Serv. Res.
Pap. NC-32, 8 p., illus. 1969.

Standing Timber Coefficients for Indiana Walnut Log Production. by
James E. Blyth, Edwin Kallio, and John C. Callahan. USDA Forest
Serv. Res. Pap. NC-33, 9 p., illus. 1969.

Climatic Conditions Preceding Historically Great Fires in the North

Central Region, by Donald A. Haines and Rodney W. Sando. USDAForest Serv. Res. Pap. NC-34, 19 p., illus. 1969.

Initial Thinning in Red Pine Plantations, by John H. Cooley. USDA
Forest Serv. Res. Pap. NC-35, 6 p., illus. 1969.

Biological Growth Functions Describe Published Site Index Curves for
Lake States Timber Species, by Allen L. Lundgren and William A.
Dolid. USDA Forest Serv. Res. Pap. NC-36, 9 p., illus, t970.

Defect Indicators in Sugar Maple A Photographic Guide, by Rictmrd
M. Marden, and Charles L. Stavton. USDA Forest Serv. Res. Pap.
NC-37, 29 p., illus. 1970.

\

Estimating Sugar Maple Bark Thickness and Volume, by Charles L.
Stayton and Michael Hoffman. USDA Forest Serv. Res. Pap. NC-38,
8 p., illus. 1970.



ABOUT THE FOREST SERVICE . . .

As our Nation grows, people expect and need more from their forests- more

wood; more water, fish, and wildlife; more recreation and natural beauty; more
special forest products and forage. The Forest Service of the U.S_. Department
of Agriculture helps to fulfill these expectations and needs through three major
activities:

• Conducting forest and range research at over
75 locations ranging from Puerto Rico to
Alaska to Hawaii.

• Participating with all State forestry agcncics
in cooperative programs to protect, improve,
and wisely use our Country's 395 million acres
of State, local, and private forest lands.

• Managing and protecting the 187-million acre
National Forest System.

The Forest Service does this by encouraging use of the new knowledge that
research scientists develop; by setting an example in managing, under sustained
yield, the National Forests and Grasslands for multiple use purposes; and by"
cooperating with all States and with private citizens in their efforts to achieve
better management, protection, and use of forest resources.

Traditionally, Forest Service people have been active members of the commu-

nities and towns in which they live and work. They strive to secure for all,
continuous benefits from the Country's forest resources.

For more than 60 years, the Forest Service has been serving the Nation as a
leading natural resource conservation agency.
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